& J2X0-2273-01EN

SymfoWARE (R) Server
RDB User’ s Guide: Database Definition

[o®)
FUJITSU

Preface

mPurpose

This manual is a user's guide for SymfoWARE Server RDB. The manual explains how to create and define databases.

mintended reader

This manual is for users who design and define SymfoWARE/RDB databases. Readers should have the following
skills and knowledge:

- A general understanding of SymfoWARE/RDB functions and databases

- A working knowledge of applications to which SymfoWARE/RDB is applied
- The ability to develop application programs using C or COBOL

- Working knowledge of Solaris systems or Windows NT systems

mOrganization

This manual consists of the following chapters and appendixes.

#Chapter 1 SymfoWARE/RDB Overview

Provides a general overview of SymfoWARE/RDB functions, databases, and database access methods.
#Chapter 2 Database Creation

Explains the procedure from designing a SymfoWARE/RDB database up to using it.

#Chapter 3 Database Definition Alteration and Deletion

Explains how to alter or delete a definition for a database that has already been created.

#Chapter 4 Storage Structure

Explains the features of data storage structures, which play an important role in determining processing efficiency.
This chapter also explains how to allocate database space.

#Appendix A Quantitative Restrictions

Lists SymfoWARE/RDB limitations.

#Appendix B Sequential Relationships Among Definition Changes
Indicates basic sequential relationships among changes made to database definitions.
#Appendix C Operating Environment File Parameters

Lists parameters that can be specified in the operating environment file for tuning the application program operating
environment.

#Appendix D Environment Variables

Explains environment variables for tuning the application program operating environment.
#Appendix E RDB Command Summary

Lists RDB commands and summarizes the command functions.

#Appendix F Handling SymfoWARE/RDB Messages

Explains how to reference information about user responses to messages generated by the SymfoWARE/RDB
system.

#Appendix G Exclusive Control Between Application Programs and RDB Commands
Explains exclusive control when an application program and SymfoWARE/RDB command operate simultaneously.
#Glossary

The glossary defines technical terms used in this manual.

mReading this manual

The purpose of this manual is to give readers a basic introduction to databases and their creation to make it easier to
use SymfoWARE/RDB.

Unless otherwise noted, application programs and SQL statement in this manual are written in C.

mTitle Notation of Related Manual

The table below lists the manuals related to this manual and their title notation in this manual.

Manual title for each 08
Motation in this manual
Solaris Windows NT
General Description FUIITEU ZymfoWARE Zerver General Description
Start Guide: Client FUNTEU SymfoWaARE Server Start Guide: Client
Start Guide: Server SymfoWARE Server Start Guide: Server
- (EESSE)
RDEB Operations Guide SymfoWARE Server RDB SymfoWARE Server ROB
Crperations Guide Operations Guide (EESSE)
EDE Uset's Guide: FUITAEU SyufoWARE Server RDEB User's Guide: Database Definition
Database Definition (Thismanual)
RDB User's Guide: FUNTSU SymfaWARE Server RDB User's Guide:
Application Program Development Application Program Devel opment
S0L Beginner's Guide FUINTAU SymfoWARE Server 2L Beginner's Guide
0L Reference Guide FUNTEU SymfoWARE Server 30L Reference Guide
BOLTOOL Uset's Guide FUNT3U S3ymfoWARE Server 3OLTOOL User's Guide
RDA-ZV Operations Guide SrmfoWARE Server RDA-3V Operations Guide
Cluster Installation SymfoWARE Server Cluster
Acdmin stration Chaide gls?,cailianon-‘Adrmmstratm -
Ui

- Mo corresponding manual

mPosition of this manual

Manual system and position of this manual in the system

i

[Commonly used for server/client]

Ceneral Description * Provides an overview of SymfoWARE and
Sy foWARE databases.
Start Guide Server *+ Explains how to install and set up the
SymicWARE Server,
Start Guide Client = Ezplains how to install and zet up the
symfcWARE Client.
[Sym o WARE Server]
— RDB Cperations Guide « Explains how to operate, manage, and maintain
relational databases.
—| RDB User's Guide: ' Prowides an overview of relational databases and
Database Defintion . . .
{this manmal) explains their creation and data storage structure.
— RDEB User's Guide: = Explains how to create application programs for
Application Prograr manipulating relational database data,
Developtment
— 30L Beginner's Guide =+ Explains how to use 3QL statements for
manipulating relational database data
— S0L Reference Cnude = Explains the definitions, operations, and retrieval
language (S0QL) syntax for relationaldatabeses.
— =0L TOOL User's Guide «+ Provides an overview of 3QL TOOL

and explains its use,

| RDA-SV Operations Guide | =+ Provides an overview of RDA-SV functions and
describes the BEDA-ZW features, environment
[Extended functions) definition, and messages.

Cluster Installaton/ ... Ezplains the hot standby operation and load share
Administration Guide operation of SymfnWARE,

Besides the preceding manuals, SymfoWARE provides an online manual.

#Command syntax

UNIX

The man command is used to display the syntax of RDB commands.

For details on the man command, refer to AnswerBook2 of the Reference Manual Collection.

The copyright of the online manual is the property of UNIX System Laboratories, Inc. and Fuijitsu. Follow the items in

the written contract to use the product properly.
Windows NT/2000/XP
The command syntax is included in the Windows NT/2000/XP online help.

#Action in response to displayed messages

UNIX

The rdbprtmsg command (RDB command) gives the meaning and user response for each displayed message.

iii

Windows NT/2000/XP
Action in response to displayed messages is included in the Windows NT/2000/XP online help.
#Related manuals

The related manuals are as follows:

- Reference Manual Collection of AnswerBook 2
- Fujitsu COBOL User's Guide for Windows

- COBOLS8S5 User's Guide

- Fujitsu COBOL Language Reference

mComments on this manual

#Products covered by this manual

UNIX

- SymfoWARE Server Enterprise Edition 5.0 or later
- SymfoWARE Server Hot Standby Option 5.0 or later

Windows NT/2000/XP
- SymfoWARE Server Enterprise Edition V5.0L10 or later
#Operating systems supporting SymfoWARE/RDB

- Solaris

- Microsoft(R) Windows NT(R) Server, Enterprise Edition

- Microsoft(R) Windows NT(R) Server network operating system

- Microsoft(R) Windows NT(R) Workstation operating system

- Microsoft(R) Windows NT(R) Server, Terminal Server Edition

- Microsoft(R) Windows(R) 2000 Professional operating system

- Microsoft(R) Windows(R) 2000 Server operating system

- Microsoft(R) Windows(R) 2000 Advanced Server operating system
- Microsoft(R) Windows(R) XP Professional

#UNIX release version
This system conforms to UNIX System Rel 4.2MP.
#About the drawings

The drawings covering SymfoWARE/RDB printing in this manual are intended to give the reader only a rough idea of
how the printing process works.

#About the explanatory models

The sample databases in this manual are modeled mainly from inventory control databases of retailers. The database
designs and data contents are fictitious and not based on facts.

#Abbreviated names

This manual uses the following abbreviated names:

v

Abbreviation Full name

Windows 95/08/Me IWlicroso (R WindowsF) 05 operating system
Wicrozoft(F) WindowsR) 98 operating system
Wlicrozof(F) WindowsF) 98 Second Edition
Wicrozo (R Windows R WMillennium Editi on
Windows Wlicrozoft(R) Windows F) 95 operating systetn
Whicrozsof(F) WindowsR) 93 operating systemn
Microsof(E) WindowsE) 98 Second Edition
Whcrosof(F) WindowsF) Millenniwm Edition
MicrozoftF) Windows (R ¥F Professional.
Microsoft'R) Windows (B XF Home Edition.

Microsoft(R) Windows NTE) Server network operating system
Wicrozsof(F) Windows NT(R) Workstation operating systermn
Microsof(F) Windows NTE) Server, Enterprize Edition
Whcrozoft(F) Windows NT(R) Server, Terrminal Server Edition
Microsoft(R) WindowsF) 2000 Professional opetating system
WlicrozoffR) WindowsF) 2000 Server operating system, and
Wicrosoft(F) WindowsR) 2000 Adwanced Server opetating system

Whcrosoft(F) Windows NT(R) Server network operating systern,
Wlicrozofi(R) Windows NT(R) Worlcstation operating systetn,
Wicrozoft(F) Windows NT(R) Server, Enterprize Edition, and
Wicrozoft(F) Windows NTR) Server, Terminal Server Edition

Windows NT

Wicrosof(F) Windows (R) 2000 Professional operating systerm,
Windowes 2000 Whicrosofi(E) Windows (F) 2000 Zerver operating system, and
WhicrosoftR) Windows (B 2000 Advanced Server operating systetn
WlicrozoftR) Windows (B XF Profesdiona, and

Ilicrosoft(R) Windows (B 2F Home Edition

Windows XP

Wicrosof(F) Windows NT(R) Server network operating systern,
Whcrozof(F) Windows NT(R) Worlcstation operating systemn,
Wlicrozoft(R) Windows NT(R) Server, Enterprize Edition,
Microsof(E) Windows NTR) Server, Terminal Server Edition,
.Uﬁndnm NT2n0nxp | WicrosofR) Windows (R 2000 Professinal operating systern,
Whicrozof(F) Windows () 2000 Server opemting system,
Whcrosof(F) Windows (F.) 2000 Advanced Server operating systemn, and
MWicrosofi(E) Windows (R XF Professional

WS-DO3 Wicrozof(F) ME-DOSE) 5047 or later, and

Wlicrozoft(R) MS-DOGSCE) 6,277 ot later

SymfoWARE Zerver | SymfiWARE Server Enterprise Edition

July 2002

Microsoft, MS, MS-DOS, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Limited.

Solaris is a trademark of Sun Microsystems, Inc. in the United States.
Lotus is a registered trademark of Lotus Development Corporation.
SymfoWARE is a registered trademark of Fujitsu Limited.

Other company and product names used in this manual are trademarks or registered trademarks of their respective
owners.

The symbols of (R) and TM are omitted in this manual.

All Rights Reserved, Copyright (C) FUJITSU LIMITED 2002

vi

Chapter 1 SymfoWARE/RDB Overview

SymfoWARE/RDB provides functions for creating a database, managing a database, and manipulating database data.
Before creating a database, the user must design the database structure and define the database based on this
database structure design specifications. Then, the user must generate the database based on this database
definition. Database management is required for checking database usage conditions and handling database damage.
Structured query language (SQL) statements are used to access data within the database.

SymfoWARE/RDB provides functions for building a flexible client server system that includes the networks between
systems.

This chapter covers the following topics:
1.1 Overview of SymfoWARE/RDB Functions
1.2 Overview of the SymfoWARE/RDB Database Configuration

1.3 Overview of Database Creation Tasks

1.1 Overview of SymfoWARE/RDB Functions

SymfoWARE/RDB is a relational database processing system that represents data in table format and processes
those tables. The functions of SymfoWARE/RDB can be broadly divided into functions for:

- Defining table formats (database definition)
- Maintaining and managing databases (database management)
- Manipulating tables (table manipulation)

Figure: SymfoWARE/RDB functions configuration shows the configuration of SymfoWARE/RDB functions.

[Figure: SymfoWARE/RDB functions configuration]

Clienl Sarver
Database SymioWARERDE
delintion
Communication /(_——————__‘3 ROE commands
Database
Application e Detabase
PrOGNEL table / myanagement
OpsTations | Databage defintion 75
\‘\ Database delinition 2|z
* iFormation -1 2|3
ElEls
AN A 2| &
In:IEx\\ !m:lex\ nelax E %
[T}
]
Tabie| |Tabig] »»~ | Taple 4 A
Slips antt othar el
woUChErs e i

Extamal file

Definttion
indommation

o 8TOCK /
ITHND PRODUCT STOCKQTY | WHCODE
10 | TELEWISION 85 2
111 | TELEWISION % 5
123 | REFRIGERATOR 80 1
124 | BEFRIGERATOR 75 1
140 | CASSETTE DECK 120 2
212 | TELEVISION B 2
RS, |
226 | REFRIGERATOR 8 1
227 | REFRIGERATOR 15 1
osp | CASSETTE DECK 25 s
243 | CASSETTE DECK " 2
351 | CASSETTE TAPE 2500 2

Save lile

mFunctions for defining table formats (database definition)

To create a database, first define the table formats. 2.2 "Designing a Database," explains the kinds of formats used for
tables. RDB commands are used to execute database definitions. For information about how to use actual RDB

commands to define a database, see Chapter 2 "Database Creation."

mFunctions for maintaining and managing databases (database management)

SymfoWARE/RDB has functions for creating, saving, restoring, maintaining, and managing a database. These

functions are invoked by executing specific RDB commands.

For descriptions of the database maintenance and management functions and information about how to execute the

functions, refer to the "RDB Operations Guide."

mFunctions for manipulating tables (table manipulation)

Data manipulation SQL statements are used to insert, alter, delete, and reference data in tables. These SQL
statements are used within application programs. For information about how to develop application programs that use
data manipulation SQL statements, refer to the "RDB User's Guide: Application Program Development.”

For information about how to use data manipulation SQL statements, refer to the "SQL Beginner's Guide."

1.2 Overview of the SymfoWARE/RDB Database Configurat

ion

As Figure: SymfoWARE/RDB database configuration shows, a SymfoWARE/RDB database consists of multiple
databases and an RDB dictionary and RDB directory file for managing them. The database logical structure, storage
structure, and physical structure definition information is stored in the RDB dictionary. Base tables, which are the
database data, and indexes are stored in database spaces.

[Figure: SymfoWARE/RDB database configuration]

BDB dicticnary

definition inforrmation

Storage structure
definifion infomation

Physical stnecture
definition infarmaticn

I e il

Lepical stucture = EEEEEEERE

RDB disactory fils

Maragernant
brfgrrraian

Oparation infomation

Database 1 Database 2 -)
Y TN
/,_.«-'-"_'_'_'_ IR 'f-o-'—"'__'_'_
M Il AN)
Indlex fnglear Ingex fndex
LA LN LAY £ N
Table daty [Tabls datd [Fabla Tabla datd

In addition, as Figure: Relationship of logical, storage, and physical structures within databases shows, each database
consists of schemas, base tables, data structure organizations (DSOs), data structure instances (DSIs), and
databases spaces. These items are the basic elements of a three-tier hierarchy composed of the logical structure,

storage structure, and physical structure.

[Figure: Relationship of logical, storage, and physical structures within databases]

AT Bohema Bohemna 2
Logical !
structute . Base tatie Dase table ot Blase {abhe
: / AR Ak
¥ VAN VAR
Tabla D50 Table DSO Index DSO Tahla D30 Index DE0 Indax OS0O
Storage | ¥, Z\ & f N 3 F, 3
structure .
: Y y ¥
: DS oSl DSi DSt ol 21 (03] DSl
X F F F F 3 3
! k k k k k ¥ k Y
Physical : Batabase Database Database Database Database Database
structure : space 1 space 2 space 3 SPAECE Fk SpECE m space 7

1.2.1 Physical structure

The physical structure consists of database spaces.

mDatabase space

Under UNIX, a database space is defined on a raw device created on a magnetic disk; under Windows NT/2000/XP, a
database space is defined in a local file created on a magnetic disk. A SymfoWARE/RDB system enables multiple
database spaces to be defined so that the hard disk I-O load balance can be adjusted. In addition, the base table data
or index data of a single schema can be divided and stored in multiple database spaces.

In SymfoWARE/RDB, database spaces become storage structures that enable resources to be managed. Careful
consideration is given to processing efficiency, storage efficiency, and operation. The following two functions can be
used primarily:
Multi-database space:
A large-scale database can be built by allocating one table or index in multiple database spaces.
Split table operation:
When a single table is split into multiple parts based on specific rules, each subdivision unit can operate
independently. This function enables independent creation, update, backup, and recovery in parallel for each
subdivision unit of a large-scale database.

1.2.2 Logical structure

The logical structure consists of schemas and base tables, the elements of the schema.

mSchema

A schema consists of table data and table definition data. The user must carefully consider the following aspects when
determining the kinds of base tables that are to form a schema. Consider the applications that are to use the database,
the contents of the data to be processed, and the data processing methods. The schema configuration is defined by
schema definition statements. These schema definition statements define the following items:

- Schema name
- Schema components
- Base table name and format

Schema definition data is entered in the RDB dictionary. Base table data is stored in a database space.
Multiple schema definitions can be entered in an RDB dictionary. In addition, base table data belonging
to a single schema can be stored in a single database space. Alternatively, base table data can be
divided in terms of individual base tables and stored in multiple database spaces.
Figure: Example of correspondence between schemas and database spaces is an example showing
multiple schemas being stored in multiple database spaces.

[Figure: Example of correspondence between schemas and database spaces]

T
Scheina definition
Information S1
ommaion 82 - [T [Dotabasespace 3y (Database spacs)
“-__________'_‘_'_'_'_'_‘_'_,.;-’
Tabie A gdata of 51
Takble € data of 51
Tabie B data of 51
""'\-—_______'___‘_,_,_.-—""' ""\-u_______'____,_,_.ﬁ"‘
y f______x W Y
T 1
Table X data of §2 Table ¥ data of 52 abls Cdaa of 5
Tahle Z daka of 52 Tabte £ data of 32

mBase table

A base table consists of columns and rows. Figure: Base table format example is a base table format example. In this
figure, one row consists of the data for one product. The data of a single row consists of several columns. A column
corresponds to a data item. The data for one product (one row) consists of the four data items (columns): ITMNO,
PRODUCT, STOCKQTY, and WHCODE.

The base table configuration is defined by schema definition statements. Table definitions in a schema definition
define the data items that form each base table. A table definition defines the following items:

- Table name
- Column
- Table constraint

#Table name

A table name is the name assigned to each table.

The table name is used to specify the table to be the object of a data manipulation. The table name is also used when
adding or deleting a table definition. This table definition specifies the table definition information subject to deletion or
addition processing.

#Column

A column definition contains the following definitions for a column that forms a base table.

Column name:
A column name is the name assigned to each column. The column name is used to specify the column to be
processed by a data manipulation. The column name is also used when altering a schema definition to
indicate the column to be altered.

Column data type:
The data of each column has a type, such as character, numeric or data-and-time type.

Column default value:
The column default value defines the value to be set if the column data is omitted when data is inserted or

updated.

Column constraint:
A column constraint defines a constraint condition on table creation. One such condition may be "each row
must have a value stored in the relevant column." Another condition may be "more than one row cannot have
the same value in the relevant column.”

#Table constraint

A table constraint enables the user to define whether or not a constraint is to be applied to a table. Such a constraint
may be "more than one row cannot have the same values in one or more columns." This constraint is called a unique
constraint.

[Figure: Base table format example]

STOCK
Row | [TRNO PRODUCT STOCKOTY | WHCODE Data of ohe fow
Fow| 10 | TELEVISION 85 2 |[-» 110 | TELEWISION BS 2
Fow| 123 | REFRIGERATOR &0 1
Data of one ealumn
110
Fow| 212 | TELEVISION o 2 (ITMNG coumn}
123
Fow| 240 | CASSETTE DECK 25) —
212
Column Colurmn Column Column
| 244
mView

A view is a virtual table for manipulating data. The view does not actually contain any data. A view table is equivalent
to the subtable of a base table as shown in Figure: Concept of a view. A view is defined by a view definition. A view
definition defines the following items:

Table name:
Defines the name of the view.
Column names:
Defines the names of the view columns.
View column and row definitions:
Defines which portions of a base table or view are to form a view.

[Figure: Concept of a view]

Base table {STOCK) View (STOOK_VEW]

ITMMND PRODUCT STOCKQTY | WHCODE NO aTy When the view Is defined by
spacitying Eha fallowing
congitions for the base tabla

110 | TELEVISION B85 2 110 BS (STOCK).
ITMND to NO
123 | REFRIGERATOR &0 t 123 B0 STOCRQTY o OFY
and setect rows for which
212 | TELEVISION 0 o 240} 25 STOCKOQTY is not 2ero.
240 | CASSETTE DECK 25 2 1 /
mindex

An index increases the efficiency of search processing for the database data. A data manipulation is usually
accompanied by a data search using column data of a table as the search key. Thus, data search efficiency is an
important factor in judging the efficiency of a data manipulation. The user can specify whether or not to create an

index for each column of a table. Multiple columns also can be combined and specified as a single index. Searching a
column for which no index has been created is less efficient than searching a column having an index. Thus, an index
must be created for a column used as a data search key. However, whenever an index is created, additional database
capacity is required for the storage. Carefully consider the space required for each index when determining the size of
a database space.

Although an index affects the database capacity and data manipulation efficiency, it does not affect the data
manipulation. The user need not be concerned with indexes when developing application programs that use SQL
statements to manipulate data.

An index is defined by a storage structure definition statement.
An index is defined for a column of a base table. An index cannot be defined for a view.

An index is defined after the schema is defined and before data is stored in the database. However, an index may also
be defined after data is stored in the database by database generation or data manipulation. An index is created in a
database space following database generation after an index has been defined and when data manipulation (update)
is performed.

Figure: Concept of an index shows an index created for the STOCKQTY column of the STOCK table. This figure
portrays the concept of an index; it does not accurately represent the database format.

[Figure: Concept of an index]

Database space I
Index STOCKOTY Puolnters
i 0 6 —]
& 7
& &
T4 11
15]
Search for STOCKQTY =60 = gg t g
EE 4
85 i
a0 2
120 &
L 2500 12
ITHANG PRODUCT STQCKOTY | WHCCGDE
1 110 | TELEVISION A 2 -
2 11t | TELEWVISION a0 2 -
2 177 | BEFRIGERATOR 60 1
4 124 | REFRIGERATCRH KL 1 -5
5 140 | CASSETTE DECK 120 2 -
[212 | TELEVISION Q 2
7 M5B | VIDEQ CASSETTE & 2 g
g 228 | REFRIGERATUR 3 1
] 227 | REFRIGERATOR 15 1 -«
4] 240 | CARBETTE DECK 23 2 <
t1| 243 | CASSETTE DECK 14 2 <—
2 351 | CASSETIE TAPE 2500 2 <

-_—

The STOCKQTY index consists of STOCKQTY values and pointers indicating the position of the corresponding row in
the STOCK table, sorted by STOCKQTY value order. For example, say the user specifies a search for the row of the
STOCK table for which the STOCKQTY value is 60. In this case, first the STOCKQTY index is searched. Since the
index is arranged by STOCKQTY value order, the search can be performed very quickly. Once the search of the index
is completed, the position of the row in the STOCK table is revealed by the corresponding pointer. The specified row
can thus be obtained.

1.2.3 Storage structure

The storage structure consists of DSOs and DSls.

mDSO

A DSO defines the storage structure of the data for a base table. The two types of DSOs are as follows:

- Table
- Index

#Table DSO

A table DSO defines the type of storage structure for storing data, and, if data is subdivided for storage, the
subdivision method.

#Index DSO

An index DSO defines how the index is created for the table.

mDSI

A DSI defines an area for storing base table data so that it can be allocated in a database space. The two types of
DSils are as follows:

- Table
- Index

#Table DSI
A table DSI defines an area for storing data so that it can be allocated in a database space.
#Index DSI

An index DSI defines an area for storing index data added to a table so that it can be allocated in a database space.

A DSl associates a table or index with a database space.

DSOs and DSIs can be related in either a 1:1 or 1:n correspondence. If a 1:n correspondence exists, table data is
subdivided for storage, and rules for splitting the data are defined in the DSO. Figure: Example in which DSOs and
DSls are associated in a 1:1 correspondence is an example in which table data is stored without being split. Figure:
Example in which DSOs and DSls are associated in a 1:n correspondenceis an example in which table data is
subdivided for storage. An index DSI is defined for a table DSI. If table data is subdivided for storage, an index DSI
must be defined for each table DSI.

[Figure: Example in which DSOs and DSIs are associated in a 1:1 correspondence]

Database spage

Index DSOS,
o
A

Index D3

Database space

Table D3SO Tabia DSt
S —

— . Corespandence between DSO and DS
----- » . Correspondance betweaan atable DS| and an Indax DSE

[Figure: Example in which DSOs and DSIs are associated in a 1:n correspondence]

T

b Index DSI

\R__'_f/
P

N |ngex BS1 ||

w

Imdex DS0 \\

Database space

we) L
|| Tatkeos N
Table DSO %/’f :
T :
\W" ;
R I Ce—
“"-___h;____'_'_‘_____‘__-"'

—>» ;. Correspondence between DSO and S|
----- > : Comespondence betwesn a tabla DSI and an index, DSI

As Figure: Storage structure components shows, the four types of storage structures are SEQUENTIAL, RANDOM,
OBJECT, and BTREE. The SEQUENTIAL, RANDOM, and OBJECT structures are used as storage structures for
tables. The BTREE structure is used as a storage structure for indexes. Each of these storage structures consists of
one or more components as shown in Figure: Storage structure components.

[Figure: Storage structure components]

SEQUENTIAL BANDOM OBJECT

structure struciure structure BTREE siructure

L Data part Piime pan L Data part Index part
COwarttow part Data part

A DSI can consist of multiple database spaces. The configuration of the multiple database spaces is divided into two
types. In one configuration, a database space is allocated for each component in the storage structure shown in
Figure: Storage structure components. In the other configuration, a database space is allocated to increase the size of
each component. Figure: Example in which a database space is allocated to each component is an example in which
a database space is allocated to each component. An example of allocating multiple database spaces to increase the
size of each component is shown in Figure: Example of allocating multiple database spaces to increase the size of
each component.

[Figure: Example in which a database space is allocated to each component]

1) For @ SEQUENTIAL structure 2 For a BANDOM struchers
DSl 0Si Prirme part
{SECIUENTIAL) {RANDOM}
—Gﬂv&rﬂw par
3y Foran CBJECT structurs 41 For e BTREE struclure
(] DSl Indlegx part
{LUBJECT) [BTREE)

Database space

—Ij Data patt

10

[Figure: Example of allocating multiple database spaces to increase the size of each compon

ent]

1] Fora SEQUENTIAL structure

DSl
[SEQUENTIAL}

@ Database SpaCE
O

2] For a HANDOM structume

psl
(RANDOM)

Database space
l‘\ Frime parn

Databasa space

2 Foran OBJECT structurs

DSt
OBJECT)

Uﬁp&r‘t

4] For 2 BTREE structurs

Dal
{BTREE)

rcken pary

Databaae space
1 ata part

1.3 Overview of Database Creation Tasks

A SymfoWARE/RDB database can be created in one of the following two ways:

- Using RDB commands
- Creating a SQL-embedded program

11

mUsing RDB commands

The user can create databases by executing RDB commands at the command prompt of UNIX or Windows
NT/2000/XP.

The user can define databases by specifying the file containing various SQLs for defining databases and using the
rdbddlex command. The user can also create databases by using the rdbsloader command. This method is suitable
for operation in which database logical and storage structures are defined in detail.

For details of how to create databases by using the RDB commands, see Chapter 2 "Database Creation."
mCreating a SQL-embedded program

Create a SQL-embedded program that uses dynamic SQL to define databases. Create a SQL-embedded program
that uses the INSERT statement to create databases.

Details on using a SQL-embedded program to create databases are given in Chapter 2 "Database Creation."

Figure: Overview of tasks involved in database creation provides an overview of the database creation tasks.

[Figure: Overview of tasks involved in database creation]

UM systerm or Windows N T/2000/%FP

Creating a relational database

by using RDEB corrmands SymfoWARE Gerver
ROB cormmarnd| sie—1— GymfoWARES -
RDE

Creatinga relatioral database VNI systermn or Windows NT/2000/%P

ty an embedded SCIL program M SymfoWRRE Server
Gymf nWARE . Appilcation
Frogrammer's Kit program i
B SumfoWARES -
— RDE
Appilcation
prograrm o >

12

Chapter 2 Database Creation

This chapter covers procedures ranging from the design and creation of a SymfoWARE/RDB database to database
operation.

2.1
n

2.1 Overview of Tasks From Database Design To Operation
2.2 Designing a Database

2.3 Creating a Database

2.4 Entering a Database Name

2.5 Creating a Database Space

2.6 Defining a Logical Structure

2.7 Defining a Storage Structure

2.8 Applying a Storage Structure Definition
2.9 Simplifying a Storage Structure Definition
2.10 Defining a Temporary Table

2.11 Defining Privilege Information

2.12 Defining Optimization Information

2.13 Generating a Database

2.14 Referencing Database Definition Information

Overview of Tasks From Database Design To Operatio

Database creation tasks are performed after the SymfoWARE/RDB system environment has been created and the
SymfoWARE/RDB system has been started. For information about creating the SymfoWARE/RDB system
environment and starting the SymfoWARE/RDB system, refer to the "RDB Operations Guide."

Refer to the following manuals for more information about the syntax of the SQL statements shown in
this manual:

- SQL Reference Guide

- SQL Beginner's Guide

The required procedure for creating and operating a database is as follows.

mDatabase creation and operation

1.

5.

©x N>

10.
. Generate the database by entering data from external data or an application program.

Design the database.

2. Enter the database name.
3.
4. Define the logical structures such as schema and table:

Create the database space.

When a logical structure is defined, a simple storage structure can be defined.
Define the storage structure (DSO and DSl for table and index).
To facilitate data retrieval and operation, the storage structure can be defined as follows:
- Divide a storage table to localize the retrieval range, thus improving retrieval.
- Divide a storage table to maintain and operate a database without having to stop regular operations
during backup and restore if a database failure occurs.
Define a temporary table.
Define privilege information.
Define optimization information.
Initialize the database (DSI). If the rdbsloader command was used to create the database, the DSI need not be
initialized.
To maintain database definition information, save the RDB dictionary data.

13

12. In preparation for using the database, save the database data.
13. Operate the database.

Figure: Procedure from database design to operation shows the flow of tasks from database design to operation.

14

Design the database

v

Enter the database nama

'

Create the database space

Drefine the logical stnicture

- Bchena definitions

- Bequence definitions

- Table definitions

- Wiew definitions

- Trigger definitions

- Procedure routine definitions
- Function rovtine definitions

l

Defing the storage structure
- DSO definition

- D8I dafinition

- Scope detinition

b

Drefine a temporary table.

b

Drefine priwilege information .

b

Define optimization information.

[Figure: Procedure from database design to operation]

b

Initialize database (DSI).

-

lIse of rdbsloader command

h

Maintain database definition
infarmation

v

Genarate the database

|

Save the database data

'

Operate the database

15

2.2 Designing a Database

To create a database, first design the database. When designing the database, be sure to carefully analyze the
business applications, types and amounts of data to be processed, and data processing methods.

The database design procedure includes steps for designing tables, attributes, simplified storage structures, and
storage structures.

mDesigning tables

Design tables that meet the needs of the business application.

mDesigning attributes

Determine appropriate data types for designed items, as well as possible column constraints and default values. For
details about the attributes that can be used, refer to the "SQL Reference Guide."

mDesigning the storage structure

#Determining the storage structure

From an application program viewpoint, the database is represented in table format. The application program
performs data operations according to structured query language (SQL) statements as if it were manipulating rows
and columns of data.

The structure for storing the data represented in table format on physical pages is called the storage structure. An
appropriate database storage structure is designed according to the analysis data of the access path. To design such
a database storage structure, obtain the size of the table from the amount of data and determine the required amount
of disk space. The use of a split table is determined by estimating the amount of data to be added and the operation
time acceptable for database reorganization.

For details about storage structures, see Chapter 4 "Storage Structure."

- SEQUENTIAL structure
- RANDOM structure

- OBJECT structure

- BTREE structure

#Estimating the amount of database space required for each storage structure

In this step, allocate database space. Carefully consider the amount of data to be processed and the area access
patterns, then allocate database space for each component of the storage structure.

For details about estimating the amount of database space required for each storage structure, see 4.4 "Estimating
the Required Amount of Database Space."

mDesigning a simplified storage structure

To simplify the process of defining the storage structure, specify the database space for storing data by defining the
table or index. SymfoWARE/RDB then automatically defines the storage structure. In this case, the SEQUENTIAL
structure is used as the table storage structure. For a table of multimedia data, the SEQUENTIAL or OBJECT
structure can be selected as the table storage structure. This process does not allow the use of split storage.

If the storage structure is simplified defined, the DSO and DSI names of the table are automatically assigned from the
names generated by the table or index definitions. The data length and allocation are automatically determined at this
time.

For simplified definition of the storage structure, the capacity of DSI is dynamically expanded.

The naming prefix, data length, allocation amount, and DSI capacity expansion setting can all be changed by the use
of operating environment file parameters. For a table of multimedia data, the storage structure can also be selected.
For information about the operating environment file, refer to the "RDB User's Guide: Application Program
Development."

mExamples of designing the database

Figure: Contents of the inventory management database shows an inventory management database for a retail store.
This inventory management database is used as an example for explaining database design in this section. This
database is used to implement the inventory management applications of the retail store. The inventory management
database consists of three tables, as follows.

16

STOCK table:

Contains information about products handled and quantities of those products in stock
ORDER table:

Contains information related to products, quantities ordered, and purchase prices for each customer.
COMPANY table:

Contains information about company names, telephone numbers, and addresses for each customer

The usage examples use the inventory management database mainly to explain database creation and data
manipulations. The table and column names above are used in usage examples throughout the remainder of the
section. Refer to them as necessary.

mSTOCK table

Figure: Contents of the inventory management database a) shows the contents of the STOCK table, which consists of
these four columns:

ITMNO:
Column of code number data assigned to products
PRODUCT:
Column of product type data
STOCKQTY:
Column of data indicating the quantity of the product in stock
WHCODE:
Column of number data for warehouses where the products are stored

mORDER table

Figure: Contents of the inventory management database b) shows the contents of the ORDER table, which consists of
these four columns:

CUSTOMER:
Column of company number data for customers
PRODNO:
Column of code numbers assigned to products (corresponds to the ITMNO column of the STOCK table)
PRICE:
Column of data indicating product purchase prices
ORDERQTY:
Column of data indicating quantities of products ordered

mCOMPANY table

Figure: Contents of the inventory management database c) shows the contents of the COMPANY table, which
consists of these four columns:

COMPNO:
Column of code number data assigned to companies (corresponds to the CUSTOMER column of the ORDER
table)
COMPANY:
Column of company name data
PHONE:
Column of company telephone number data
ADDRESS:
Column of company address data

17

[Figure: Contents of the inventory management database]

a) STOCK table

ITMNO | PRODUCT STOCKQTY | WHCODE
110 TELEYISION 85 2
11t TELEVISION 90 2
123 REFRIGERATOR 60 f
124 REFRIGERATOR 75 I
140 CASSETTE DECK 120 2
212 TELEVISION 0 2
215 VIDECG CASSETTI PLAYER 5 1
226 REFRIGERATOR 8 t
227 REFRIGERATOR] i
240 CASSETTE DECK 25 2
243 CASSETTE DECK 14 2
351 CASSETTE TAPE 2500 p

18

by (ORDER 1ahie

CUSTOMER PRODNO PRICE ORDEROTY

&l 123 4H00 Al

61 {24 0410 40

&l 146) BO00 R0

6l 215 240000)

6l 240 0000 20

02 11g 37500 E20

62 246 112500 20

62 31 L LY

63 i1 57400 R0

a3 212 205000 30

63 215 246000 1

7l 140 TR0 A0

il 35] 390 O

72 140 7000 0

72 215 PAILELY, L}

72 226 105000 20

¥2 243 40D L

2 351 350 100K}

74 110 39000 120

74 111 54000 120

74 226 RELY 2{)

4 227 140400 10

74 351 390 FO0

¢y COMPANY table

COMPNO | COMPANY FHONE | ADDRESS

6l IGEA INC. 4332222 | LONBYON W.C, 2 ENGLANEY 1-2-3
62 ADAM LTE. JA-1111 | SANTA CLARA CA USA 7-8-9
63 MOON C{) 143-3333 | FIFTH AVENUE NY USA 1-1-1
11 RIVER CO. 344-1212 | SAKAL OSAKA JAPAN 4-5-6
72 DRAGON CQ. | 3737777 | HARANIKL TOKYO JAPAN 2-3-7
74 FIRST C{. 2559955 | SYDNEY AUSTRALIA 4-16-16

19

mColumn attributes of each table of the inventory management database

Table: Column attributes of each table of the inventory management database shows the column attributes of each

table.

[Table: Column attributes of each table of the inventory management database]

Table pame | Column name | Column daia type Colurnn Notes
constraint

STOCK ITMNO SMALLINT NOTNULL | Product code number
PRODLUCT CHARACTER({2S) NOT NULIL | Product type
STOCKQTY INTEGER — Quantity of product in stock
WHCODE SMALLINT — Warchouse code

ORDER CUSTOMER SMALLINT NOT NULL | Customer company number
PFRODNO SMALLINT NOT NULL | Product code number
PRICI: INTREGTR — Product purchase price
ORDERQTY SMALLINT — Quantities of the product ordered

COMPANY | COMPNO SMALLINT NOTNULL | Company code number
COMPANY CHARACTER{ I NOTNULIL. | Company name
PFHONE CHARACTER{14) — Telephone number
ADDRESS CHARACTER{ }h — Company address

— NULL is permitted.

mRelationships among the STOCK table, ORDER table, and COMPANY table

Figure: Relationships among the STOCK table, ORDER table, and COMPANY table shows the relationships among
the three tables. The STOCK table and ORDER table are related according to ITMNO and PRODNO. In addition, the
ORDER table and COMPANY table are related according to CUSTOMER and COMPNO. For example, the product
having ITMNO 123 in the STOCK table is the PRODUCT named REFRIGERATOR. Further, the STOCKQTY is 60,
and the number of the warehouse in which this product is stored is 1. From the row of the ORDER table in which
PRODNO is 123, the PRICE and ORDERQTY of this product are 48000 and 60, respectively. Moreover, since the
company number of the CUSTOMER is 61, the following data can be gleaned from the COMPANY table row in which
COMPNO is 61. Users can learn the company name, telephone number, and address of the CUSTOMER of that
product.

20

[Figure: Relationships among the STOCK table, ORDER table, and COMPANY table]

STOCK table ITRING PRODUCT STOCKOTY WHCODE
ORDER tabla CUSTOMER PROONG PRICE ORBERGTY
COMPANY 1able | COMPNO COMPANY PHONE ADDRESS

«—>» Indicatas a relglonship tha asscciates the values.

2.3 Creating a Database

This section contains the following topics to explain how to create databases:

- Defining a database by using the rdbddlex command
- Defining a database from an application program

2.3.1 Defining a database by using the rdbddlex command
This section shows how to create databases from a definition file.
Physical, logical, and storage structures can be defined using the rdbddlex command.

The first step is to create an input file to be used by the rdbddlex command. The next step is to execute the rdbddlex
command.

The d option of the rdbddlex command can only be omitted if the first SQL statement of the definition file is the
CREATE DATABASE statement.

minput file format of rdbddlex command

The syntax of for describing an input file of the rdbddlex command has the following general formats:

#Format 1

Specify a semicolon (;) to terminate each SQL statement.

CREATE DATABASE RDBDE
| T

Terminator specification

#Format 2 (Format for defining a procedure routine)

To define a procedure routine, prefix the input file with "EXEC SQL" and suffix it with "END-EXEC;". The data between
"EXEC SQL" and "END-EXEC;" is assumed to be an SQL statement. This format is only valid if the x option has been
specified in the rdbddlex command.

©OEXEC SOL E
CREATE PROCEDURE FROCOI

| END-EXEC: :

21

Figure: Sample creation of a database from a definition file is a sample of database creation from a definition file.
Figure: Sample definition file is a sample definition file.

These figures are examples for Solaris. For Windows NT, change the input file specification in the rdbddlex command
and the database space definition in the input file as shown below.
- Windows NT/2000/XP
- Input file specification: C:¥USERS¥DEFAULT¥DDL.DAT
- Database space definition: CREATE DBSPACE DBSPACE1 ALLOCATE FILE
C:¥SFWD¥RDB¥USR¥DBSP¥DATABASE_SPACE ATTRIBUTE SPACE(2M)
Use two consecutive hyphens (--) to specify comments. Everything on the line after the two hyphens is treated as a
comment.

[Figure: Sample creation of a database from a definition file]

rdbddles -d RDEDE fhome/rdbADDL Addl . dat
T T
Dratahase name specification Inpuit file specification

22

[Figure: Sample definition file]

B I
! - Define a database named "RDBDB”

: CEREATE DATABASE RDEDE:

-- Defing a database space named "DBSPACE 1"

CREATE DESPACE DESPACEI ALLOCATE RAWDEVICE /dev/rdsk/c0tldfsl;
- Define a schema named "“STOCKS”

CEEATE SCHEMA ETOCEKS

-- Define & management takle for stocked products.

: CREATE TABELE STOCK {ITMNO SMAELINT NOT NWULL,

: FRODUCT CHARACTER{Z3] NQT BWILL,
i STOCHEOYT INTEGER,

i WHCODE SMAELENT,

PEIMARRY KEY (ITMNO)
b

CREATE VIEW MASS_STOCK {NC, QTY]
A5 SELECT ITMNG, STOCKQTY FROM STOCES . S5TOQCK
WHERE STOCKQTY >= 50

-- Define & management table for ordered preducts.

CREATE TABLE ORDER {CUSTCMER SMAELINT HNOT WULL,
PRCDNO SMALLINT NCT NWULL,
PRICE INTEGEER,
OHDERQTY SHMALLINT,

PREMARY KEY (CUSTOMER, PRODNG}
}

CREATE VIEW MASE_ORDER {FRCDNG, PRICE}

AS SELECT TFRCDNC, PREICE FRCM STCCES.CRDER
WHERE ORDERQTY >= 100

- Define a managament iabla for custmer companies,

5 CRERTE TAELE COMPANY (COMPNO SHMABLENT NOT NULL,
COMPRNY CHRRACTER{Z5)] NGT BRILL,
FHCNE CHARACTER{14],
ADDREES CHARACTER{30],

PRIMARY KEY (COMPNQ)
}

: CREATE VIEW COMPBANY1 AS SELECT COMPNG, COMPANY FROM STOCKS.COMPANY

23

— ddl.dat”
-- Define a STOCK tetle storage structurs.
CREATE DSO STOCE _DSO = STOCK table DEO

FROM STOCKS . STOCK
TWPFE SEQUENTIAL(PAGESIEE(4) .ORDER(L)) ;

CREATE DSI STOCK_DSI -- STOCK table DSI
D80G STOCE_DSC
ALIQCATE DATR COM DBSPRACEL SITE 280k:

== Create an inidex based on PRODUCT of the STOCK table.

CRERTE DSO PRODUCT IXDED - index DSO
INDER ON STOCRS.STOCK (PRODUCT}
TYFE ETREE { FAGESIZEL(4), PAGESIZEZ{4)] BY ADDRESS;
CREATE DSI PRODDCT_IXDSI — index D3I
INDEX
Dao PRODUCT_TXDSQ
ALLOCATE INDEX ON DRSPACE1 SIZE 40K,
BASE ON DESPACE1 SIZE 200K;

-- Defina an ORDER table storage structiure.

CEEATE D[S0 ORDER _DSO
FROM STOCES.ORDER
TYPE SEQUENTIAL(PAGESIEE(4] .ORDERIL))

WHERE (CUSTOMER) BETWEEM (7] AND {2); -- Split and placs data for each customer number.
CREATE DEI USA_ORLER_DSI -- ORDER table DSI Is for companias lecated in the USA.
DS ORDER_DED
USING {62, &3} == Numbars from €2 1o 53 ans companizs ir the USA.
ALLOCATE LAaTR ON DESPACEL SIEE 280k;
CREATE DEI JAPAN CRDER DEI -- ORDER table DSI Is for companias located in the USA.
DS ORDER_DED
USING {71, 72} -- Numbars from 71 b 72 ame companizs in the Japan.

ALLOCATE CATe O DBSPACEL SITE 280k;

-- Create an index for CUSTOMER and MERCHANDISE of the ORDER tahle.

CEBATE DSO BUSINESS_IXDSO
INDEX ON $TOCKS . ORDEE (CUSTOMER, MEECHANDE E)
TYFE ETREE (PAGESIZEI (4), PAGESIZE2(4)) BEY ADDRESS,

-- Index DSO

CREATE DSI EAST BUSINESS_IXDSI - Index DSI
INDEX
Dso BUSINESS_XDE0
BASE E4ST ORDEE,_Dgl
ALLOCATE BASE DN DESPACEL SIZE 200K,
INDEX UN DPSPRTE]1 SIZE 40K;
CREATE DSI WEST BUSINESS_IEZDSI - Index DSI
INDEX
D50 BUSINESS_XDSO
BASE WEST OFDEE,_DSI
ALIOCATE BASE DN DESPACE 1 SIZR 200K,
THNDEX N DPEPARCE]1 SIZE 40K;

== Define a COMPANY table storage structure

CREATE DSO COMEANY_OSO - COMPANY table DSC
FROM STOCES . COMPANY
TYFE SEQUENTIAL(PLGESIEE(4) .ORDER(1));

CREATE DEI COMBANY_DEI - COMPANY tabls DSI
D30 COMBANY DS0
ALIDCATE DATR ON DESPACEL SIZE 280k;

-- Create an index for COMPANY NO. of the COMPANY table.

CREATE DSC COMEBANT NoO. DO
INDEX ON STOCES . COMPANY (COMPANYT NG
TYFE ETEEE (FAGESIZEL (4),PAGEIIZEZ(4)) EY ADDRESZ,

-- Index D50

CREATE D31 COMPANT NO. IXDSI - Index DSI
INDEX
05O COMEANY NO. IEDSO
ALIOCATE BASE ON DBESPACE 1 SIZE Z00K.
INDEX UN DPSPACE]1 SIZE 40FK;

2.3.2 Defining the database from an application program
This section shows how to use dynamic SQL statements to create a database. Logical and storage structures can be

defined from an application program. Register a database name and create a database space in advance by using the
rdbddlex command because these tasks cannot be executed from an application program. CMDAREA1 to

24

CMDAREA3 are set up as SQL statement variables. The programming language used is C. Figure: Sample
application program definition is a sample of definition by an application program.

[Figure: Sample application program definition]

i Copy the definition statement to SQL statement varables.
© stropy (CMDRREAL sqlwvar, *CREATE SCHEMA STOCKS
CREATE TAELE STOCES | ITMHO SMALLINT NOT HILL,
ERODIRCT CHARACTER{Z5) NOT MULL.
STOCKOTY INTEGER,
WHCODE SMALLINT,
FRIMARY KEY [ITHMNO}
}
CREATE VIENW MARSS _STOCK (MO, QTY)
AZ DELECT ITMMND, STOCEQTY FROM STOCKS, STOUK
WHERE STOCHEQTY »= 50*);
CHMDAREA]l . sgllen = strlen{CMDARERAL . sglvar);
stropy (CMDAREAZ . sglvar, “OREATE DSG STOCE_DSD FROM STOOKS ., STOCK
TYPE SEQUENTIAL (PAGESIZE (4), ORDER(G)]™):

CMCAREAZ . 5gllen = gtrlen{CMDAREAZ.zglvar)
stropy (CMDRARELS . sglvar, *CREATE DSI STOCK DSI
D50 SEOCE_DSO
ALEQOCAETE DATA ON DESPACEL AIZE Z30E'");

CMGAREAZ sgllen = gtrlen{CHMDAREAZ .=gglvar) ;

#* Exceute the dynamic SQL stutemnents. ¥

EXEC QL EXECTUTE IMMEDIATE :CHMDAREAL;
BXEC SQL EXECUTE IMMELRIATE :CMDARELZ;
EEEC 50L BERCUTE IMMELRTATE : CMDAREAD;

I AR IR IR I I 0 4 1B L1 1 F T 8 LA AR £ AR 0 R MR Y LRI RIS R L R § R L Y F LR e P e

If a storage structure is simplified for database definition from an application program, one program covers the steps
from definition to creation. However, a COMMIT statement should be specified before data manipulation.

[Figure: Sample definition to creation from an application program]

i M Copy the definition statements to SQL staterment varishles.
: srrcpy{CMDARERD .sglvar, *CEEATE SCHEMA STOCKE
CREATE TAELE STOCK {ITMNO SMALLINT MN¥T MUILL,
PREODUCT CHARACTER(2%} NOT NULL,
STOCEQTY INTEGER,
WHCODE SMALLINRT.
PRIMARY KEY {ITMHOI]
| OH DESPACEL"});

CMDAREA]l.=sgllen = strlen{CMDAREA]L.sglvar):

#* Execute the dynamic SQL statements.
EXEC S5QL EXECUTE IMMEDIATE :CHDAREAL;

#* Execute COMMIT before beginning data manipulation. *f
EXEC 3L COMMIT WORK;

EXEC 5QL IWNSERT INTO STOCKS. SETOCK {ITMINO, PRODUCT, STOCEQTY, WHCODE)
VALUES (:ITMMO, (PRODUCT, (STCCEQTY, (WHCODE)

25

2.3.3 - Omitted -

2.4 Entering a Database Name

All logical structure definitions and storage structure definitions belong to a given database environment. Logical
structure definitions are the schemas and tables to be created. Such storage structure definitions are the DSOs and
DSls. The user must enter the database name before defining the logical and storage structures.

When a database name is entered, that information is stored in the RDB dictionary.

Figure: Configuration of a database shows the configuration of a database.

[Figure: Configuration of a database]

Databaze 1
——achema A Schemp B
Takle 1| |Takle 2| Takle 3
nliln] nsi

Paiabass 2

—Schema £

Table 4

Table 5

D3l

mCREATE DATABASE statement

Enter a database name using the CREATE DATABASE statement. Specify the database name to be entered in this

SQL statement. The specified database name is entered in the RDB dictionary.

Example 1:

Enter MASTER DB as a database.

CREATE DATABASE MASTEER_DE

Example 2:

Enter STOCKMN_DB as a database.

CREATE DATABASE STOCRMN_DLB

mDatabase name

For the database name, specify up to 36 alphanumeric characters beginning with an alphabetic character.

2.5 Creating a Database Space

Allocate database space as an area for processing a database. The database space can be reserved on a raw device
or as a local file on a magnetic disk. The raw device is used for a database space under UNIX. The local file is used

for a database space under Windows NT/2000/XP.

26

At the creation of a database space, a log environment can be allocated for each database space.

This section explains the relationships between database space and magnetic disk, and the correspondence between
the database space and the log environment.

2.5.1 Creating a database space on a raw device

Under UNIX, a partition on a magnetic disk is allocated as a database area; therefore, an actual raw device must be
acquired before a database space can be created.

fdevdrdsk/clt0dls] flevirdsk/cetlides 3 fdev/rdsk/cIt0d3s3
_ o Raw device
cetldes3 c3tld3s3
“-_,_____'_'_'_'_,_//

Database space

To create a database space, use the CREATE DBSPACE statement.

Executing the CREATE DBSPACE statement associates the database space and an actual raw device as well as the
database space and a log environment. The CREATE DBSPACE statement also registers information about the
database space in the RDB dictionary.

mCREATE DBSPACE statement

In the CREATE DBSPATE statement, specify the database space name and the name of the raw device in which the
database space is to be created.

The following example shows the execution of a CREATE DBSPACE statement to define a database space for a stock
management database.

Example:
Create database spaces DBSP_1, DBSP_2, and DBSP_3. Then allocate the following raw devices to
their respective database spaces. These raw devices must have been defined in advance.

- DBSP_1.../dev/rdsk/c1t0d1s1
- DBSP_2.../dev/rdsk/c2t0d2s3
- DBSP_3.../dev/rdsk/c3t0d3s3

CREATE DESFACE DBSF_1 ALLOCATE RAWDEVICE fdew/rdsk/clt0dls]
. CRERTE LDESFACE DEZP_2 ALLOCATE RAWDEVICE Sdew/rdsk/cet(dgs3
. CREATE DESPACE ODEEP_3 ALLODCATE RAWDEVICE fdew/rdsk/c3t0d3s3 :

#Database space name

For the database space name, specify up to 36 alphanumeric characters beginning with an alphabetic character.

27

#Raw device name
Specify the name of the raw device to be allocated for the database space.
#Notes on operating multi-RDB

For operation of a multi-RDB, the specified raw device may be shared by another SymfoWARE/RDB environment.
After a required raw device is created, use the chown and chmod commands to configure the access rights so that
only the activation user of each system can access the raw device. For details on the chown and chmod commands,
refer to the commands reference manual of the relevant operating system.

2.5.2 Creating a database space on a local file
Under Windows NT/2000/XP, an NTFS file is allocated to a database area.

Drive C: Drivs E:

BFWERADBIWSR WSRPWENRDBWISR o NTFS files
\DE_SP1 |_
\E_SP2 \DE_SP3
’— CBSP_1 AZ ’, DBSP_2 ’70339_3 J* .. Darbabiasa spaces

Create the database space by using the CREATE DBSPACE statement. When the CREATE DBSPACE statement is
executed, the database space is associated with an actual local file. In addition, the database space is associated with
a log environment. Information related to the database space is entered in the RDB dictionary.

mCREATE DBSPACE statement

In the CREATE DBSPACE statement, specify the names of the database space and the local file for creating the
database space.

Sample CREATE DBSPACE statements for executing database space definitions for STOCKMN_DB follow.
Example:
Create database spaces DBSP_1, DBSP_2, and DBSP_3.

The following database-dedicated NTFS files are allocated to these database spaces:

DBSP_1:
C:¥SFWD¥RDBY¥USR¥DBSP1¥DB_SP1

DBSP_2:
C:¥SFWD¥RDBY¥USR¥DBSP1¥DB_SP2

DBSP_3:
E:¥SFWD¥RDB¥USR¥DBSP1¥DB_SP3

| CREATE DESPACE DESP_1 ALLOCATE FILE CASFWDRDEWSR\DESPI'DE_SF1 |
: ATTRIEUTE SPACE(ZM)
| CREATE DESPACE DESP 2 ALLOCATE FILE CA\SFWD'RDEVISR\DESF2DE SP2 |
! ATTRIEUTE SPACE(IM) |
. (REATE DESFACE DESP 3 ALLOCATE FILE EASFWD\RDEAUSRADESFI\DE SP3 |
ATTRIEUTE SPACE(M)

28

mDatabase space name

For the database name, specify up to 36 alphanumeric characters beginning with an alphabetic character.
mFile name

Specify the name of file to be allocated to the database space.

2.5.3 - Omitted -

2.5.4 Operation of a scalable log

When a database space is created, a log environment can be associated with it. The method of specifying this
scalable log is as follows.

Example:

Associate log group group1 with database spaces DBSP_1 and DBSP_3, and log group group2 with
database space DBSP_2.

.+ CRERTE DESPRCE DESP_1 ALLOCATE RAWDEVICE /dew/rdsk/clt0dlsl
| ATTRIEUTE LOG GROUF groupl '
. CRERTE LDESFACE DEZP_2 ALLOCATE RAWDEVICE fdew/rdsk/cét(dgs3
| ATTRIBUTE LDG GROUF aroupé '
+ CRERTE DESPACE DBSP_3 ALLDCATE RAWDEVICE /devw/rdsk/c3t0d3s3
! ATTRIBUTE LOS GROUF groupl '

#Log group name

For the log group name, specify up to 18 characters consisting of alphanumeric characters and underbar ().

If "system" is specified for the log group name or no log group name is specified, the log group of the system is
assumed to have been specified.

For details on scalable log operation, refer to the RDB Operations Guide.

2.6 Defining a Logical Structure

After a database space has been created, define the logical structure. When the logical structure is defined, the
definition information is stored in the RDB dictionary.

The logical structure definitions include schema definitions, sequence definitions, table definitions, view definitions,
trigger definitions, procedure routine definitions, and function routine definitions.

Figure: Logical structure definition procedure shows the logical structure definition procedure.

[Figure: Logical structure definition procedure]

r--- Logical structure definition statements ---
Srhema deflrition (CREATE SCHEMA)

RDE dictionary

Sequence definition (CREATE SEQUENCE)
Table definition (CREATE TAELE)

| Wiew defirition(CREATE VIEW) | > Logical structure

] o definition infortmation
Trigget defintion (CREATE TRIGGER)
Frocedore routine definition (CREATE PROCEDURE)
Functiony outine defirition(CREATE FUNCTION)

29

mSchema definition

Schemas are managed according to schema names. Multiple schemas can be created for a single database.

Define a schema using a CREATE SCHEMA statement. A schema definition includes definitions of the base tables
and views, the elements that form the schema.

mSequence definition

A sequence can be defined to automatically generate values within the sequence. The user can use a sequence to
create primary key values.

Define a sequence using the CREATE SEQUENCE statement. The CREATE SEQUENCE statement can also be
used to add a sequence to a previously defined schema.

mTable definition

A table definition defines a base table name and the columns that form the base table. Multiple base tables can be
created for a single schema. Define a base table using the CREATE TABLE statement.

The CREATE TABLE statement can also be used to add a base table to a previously defined schema.

mView definition

A view definition defines a view name and the columns that form the view. Multiple views can be created for a single
schema. Define a view using the CREATE VIEW statement.

The CREATE VIEW statement can also be used to add a view to a previously defined schema.

mTrigger definition

If a trigger definition is made, data can be automatically inserted into another table when an application program
updates a table.

Use the CREATE TRIGGER statement to make a trigger definition. The CREATE TRIGGER statement can also be
used to add a trigger definition to a previously defined schema.

mProcedure routine definition

The database operation tasks include tasks that always process data according to a fixed pattern. These fixed-pattern
processes can be defined in a schema as a processing procedure called a procedure routine. In the procedure routine
definition, specify a procedure routine that belongs to the schema. Multiple procedure routines can be created for one
schema. Define a procedure routine using the CREATE PROCEDURE statement.

The CREATE PROCEDURE statement can also be used to add a procedure routine definition for a defined schema.

mFunction routine definition

A function routine definition defines a user-created application program written in C as a function. A function routine
can be defined to specify a function in an SQL statement and process it. Define a function routine using the CREATE
FUNCTION statement.

The CREATE FUNCTION statement can also be used to add a function routine to a previously defined schema.

2.6.1 Schema definition

A schema definition defines a schema name, a schema comment definition, and the following elements that form the
schema:

- Sequences
- Base tables

30

- View tables

- Triggers

- Procedure routines
- Function routines

Define the schema name using the schema definition statement (CREATE SCHEMA statement).

A sample schema definition for the inventory management database follows. The schema named STOCKS and the
tables that belong to it, such as the STOCK table, are defined for STOCKMN_DB.

Example:
Define a schema for STOCKMN_DB.

CREATE SCHEMA STOCKE S COMMENT 'FOR STOCK MANAGEWMENT'
T T
achema name Corrtnent definition

CREATE SEQUEMCE SEQUENCE1 - (13
CREATE TABLE STOCK TABLE (ITWINO -+, = PRIMARY KEY (ITM MOy (2
CREATE TABLE
CREATE VIEW MASS-STOCK(NO, QTY) AS SELECT -)
CREATE VIEW

CREATE TRIGGFR STOCK TABLE TRIGGER - (4
CREATE PROCEDURE PROCOOI - (5)

BEGIN

END
CREATE FUNCTION SUERO0L -~ (6

{13 Sequence definition

(23 Tahle definitions

030 View definitions

(4 Trigger definition

{30 Procedure routine definition
When using the rdbddlex command to specify a2 procedure routine definition,
do not specify the definition in a definition file that has another definition.
Specify the procedure routine definition in another definition file by using
the rdbddlex command with the = option,

(62 Function routine definition
When using the rdbddlex command to specify a3 function routine definition,

do not specify the definition in a definition file that has another definition.
Specify the function routine definition in ancther definition file by using
the rdbddlex command Owithout the % option?

mSchema name

For the schema name, specify up to 36 alphanumeric characters beginning with an alphabetic character. The schema
name must be unique within the database.

When sequences, base tables, and view tables are specified in SQL statements, the schema name is used to qualify
the sequence and table names. The schema name is also used to qualify the table names if an index is specified in an

31

index definition.

mSchema comment definition

A comment consisting of a character string can be specified for the schema. A character string of up to 256 bytes can
be specified. If no comment is necessary, omit the specification. An example follows.

Example:

Specify a comment for the STOCKS schema.

CRELATE SCHEMA STOUKS COMMENT ' STOCK MANAGEMENT SCHEMA '

T

Conunent definition

2.6.2 Sequence definition
Define a sequence using the CREATE SEQUENCE statement.

A sequence can be defined to automatically generate unique names within the sequence. The user can use a
sequence to create primary key values.

A sample sequence definition for a stock management database follows. This sequence definition defines a sequence
that belongs to a schema named STOCKS.

Example:

Sample sequence definition

' CREATE SEQUEMNCE SEQUEHNCE 1 i
' T
! SEQUENCE NAme '

BMCREMERT BY 1 START WITH 1 :

Inctremnent [ritial walue .

mSequence name

Specify a name to be assigned to a sequence. Specify up to 36 alphanumeric characters for a sequence name, whose
first character must be an alphabetic character. Each sequence name within a schema must be unique. A sequence
with the same sequence name may be defined in another schema.

2.6.3 Table definition
Define a base table using the CREATE TABLE statement.

The table definition defines the following items:

- Table name
- Columns that form the base table
- Column name
- Column data type (such as character, integer or date-and-time type)
- Column constraint (such as a unique constraint or allowing or disallowing NULL values)
- Column comment definition
- Table constraint for the base table
- Table comment definition

A sample base table definition for the inventory management database follows. This table definition defines the
STOCK table that belongs to the schema STOCKS.

Example:

Figure: CREATE TABLE statement that defines the STOCK table shows the CREATE TABLE

32

statement that defines the STOCK table.
[Figure: CREATE TABLE statement that defines the STOCK table]

CEEATE TABRLE STOCK (ITMNO SMALLINT HOT NULL,

T T T T

Tabde et Cobueds daetke Daits bype Coduwtin oottt

T

Tablz clrmcats
ERODUCT, CHEARMITER{25) NOT MNULL,

T T T

Columa name Pata type Corhuid CoosLrink

Table elements
STOCEQTY INTECER,

T T

Colomn nzme Tata ype
Table eiements
WHCODE SMALLINT.

T T

Column nsre Data npe

T

Tabls clements
ERIMARY KEY (ITMNG))

Undque consumdnt for the table

T

Table elements
COMMENT *STOCE ITEMS, STOUE QUANTITIES, AND WRREEHOIISES TABLE-

7

L ommen) dofiniticn

mTable name

Specify a name to be assigned to the base table using up to 36 alphanumeric characters beginning with an alphabetic

character.

The table name must be unique within the schema. The same table name can be defined in other schemas.

When a table definition is specified as a schema definition element and the table name is modified by a schema name,
the table name must be same as the schema name specified in the schema definition. When the table name is not
modified by the schema name, the table name is considered to be modified by the schema name specified in the

schema definition.
The table name is used to specify the table to be manipulated by a data manipulation SQL statement.
Example 1:

Sample table names

CREATE TAELE STOOE [...
CEEATE TAELE Al1234 | ... }

L

Example 2:

Invalid table name specification

33

CEEATE SCHEMA STOCFS
CREATE TAELE 5.5TOCK (...) = The schema name is not STOCKS.

Example 3:

Valid table name specifications

CREATE SCHEMA STOCHS

CEEATE TABLE STOCKES.STOCK (... +—= The schema name is valid.

CRELTE TAELE ORDER [L.,) «= The schema name is omitied,
STOCKS is used as the table name.

mColumn definition

Define the following items for each column that forms the table:

- Column name

- Column data type

- Default value

- Column constraint

- Column comment definition

The column name and column data type must be specified in a column definition. The other items can be specified as
required.

#Column name

Specify a name to be assigned to the column. For the column name, specify up to 36 alphanumeric characters
beginning with an alphabetic character. The column name must be unique within a table.

Example:

Sample column names

| CREATE TABLE $1.STOCK { PNO SMALLINT ...
CREEATE TABLE 51.5TOCK [COLl SMALLINT ...

#Column data type

Specify the data type of the column. Table: Column data types shows the types that can be specified. The data type is
determined by the type of data to be stored and the data size (length).

Example 1:

Let the data type of the PRODUCT column of the STOCK table be a 10-character fixed length
character string.

CEEATE TABLE STCOCK (PROLACT CHARACTER(LD) ...}

Example 2:

Same definition as example 1

34

CREATE TABLE STCQCE (PRODUCT CHAR{1D] ...]

Example 3:

Let the data type of the PRODUCT column of the STOCK table be a 10-character variable length
character string.

CREATE TA&BLE STOCE (PRODUCT CHARACTER VARYIMNG(LR) ...]

Example 4:

Same definition as example 3

CREATE TABLE STOCE (PRODUCT VARCHAR(LR) ...)

Example 5:

Let the data type of the STOCKQTY column of the STOCK table be a 10-digit external decimal number
with two digits to the right of the decimal point.

CEEATE TABLE STOCK (STOCELQTY NUMERIC(1G.2) ...)

Example 6:

Let the data type of the STOCKQTY column of the STOCK table be a 10-digit internal decimal number
with two digits to the right of the decimal point.

CREATE TABLE STOCK (STOCEQTY DECIMALI(LS,Z2) ...)

Example 7:
The data type of the STOCKQTY column of the STOCK table is as follows:

Integer in range of -231 to 231 -1

{REATE TAELE STOOK (STOCKQTY INTEGER .. .)

Integer in range of -2 to 2% -1

CREATE TABLE STOCK (STOCKOTY SMALLINT ...)

Example 8:

Let the data type of the STOCKQTY column of the STOCK table be an approximate numeric value with
precision 22.

35

CREATE TABLE STOCE (STOCEQTY FLOAT(22) ...}

Example 9:

Let the data type of the STOCKQTY column of the STOCK table be a double-precision approximate
numeric value.

CREATE TABLE STCCK (STCOCKQTY DOUBLE PRECISICH ...)

36

[Table: Column data types]

Type Data type specification format Explanation of specification
Charncter string CHARACTER({n) Fixed length character string of length n
fype CHAR{0) If {n} Is pmitted, the length defaults to one,
n: 1 to 32000
CHARACTER YARYENG(n} Variable length character string of maximum length
CHAR VARYING{n) n
VARCHAR(n) H (n} ts omitted, the maximum length defaclis to
one.
n: 1o 32000
Exact onmeric type | NUMERIC(p, q) p-digit zoned decimal number with q digits to the
right of the decimal point
Flmidi g Owp
DECIMAL(p, q) p-digit packed decimal number with g digits o the
DEC(p, q) right of the decimal point
ploid g Qwyp
INTEGER Enteger from -2 ta 2 - I
INT
SMALLINT Integer from -2 to 2" - 1
Approximate FLOAT(p) Approximate mumeslc value with mantissg from -2
GUINELiC [ype w2
r L2
When p = 1 to 23, treated as REAL
When p = 24 to 532, treated as DOUBLE
PRECESHON
REAL 4-byie floating point nomber
DOUBLE PRECISION 8-byte floating point number
Date time type DATE 10-character date from years to days
TIME B-character time from hors to seconds
TIMESTAME 19-character time stamp from years to seconds
Intervat type INTERVAL start-field TO end-fizld Interval (years tc months, or days to timea)
indicaced by the field specifications
(For details, see Table: Time interval specifications.)
BLOE type BINARY LARGE OBIECT (n units) Binary atribute data
BLOB {n units) The unit specification is K, M, or G and canuot be
Omitted.
If the unit specification is K: n =1 1o 2097152
If the onit specification is M: n= 1 to 2048
If the unit specification is G: n=1ar2

n: Number of charactars
p: Pracision
g Scalk

37

[Table: Time interval specifications]

Txpe Start field End field Esplanation of specification
Year and YEARI(p) - p-digil tirne inwerval indicating ycars
month typc
MONTH p-digit time interval indicating years and months
MONTH{p) - p-diglt nime inteeval indicating months
Day and hour | DAY(p} SECOND p-digit tiime interval indicating days, hours,
type minutes. and seconds
MINLITE p-digit time interval indicaring davs, hours, and
mines
HOUR p-digit time interval indicating days and hours

- p-digit fime interval indicating days

HOUR(p) SECOND p-digit time interval indicating hours. minutes.
and seconds

MINUTE p-digit time interval indicating hours and minutes

- pe-digit timne interval indicating hours

MINUTE(p) SECOND p-digit time Inierval indicating minutes and
seconds

p-dhgit fime interval sndicaling srnulcs

SECOND{p) - p-digit time interval indicating seconds

p: Precision of start date and time field (Specify an intager from 1 to 8.)

#Default value

A value can be specified as a default value for a column. Specify a value to be set in the column if no value is
specified when a row is inserted in the table. The defaults can be specified with a constant, login name (under UNIX)
or logon name (under Windows NT/2000/XP), NULL, the current date, the current time, and the current timestamp.

Example 1:

Sample column definition for the ITMNO column of the STOCK table

CREATE TABLE G3TOCK TABLE (ITMNO INTEGER DEFAULT 10

Default walue specification

Example 2:

Sample column definition for using a sequence for the ITMNO column of the STOCK table

CREATE TABLE STOCK TABLE (ITMBO INTEGER DEFAULT SEQUENCE 1. WNEXTWVAL

Default value specification

#Column constraint

A constraint on the data to be stored can be specified for a column. Specify a constraint after the data type
specification. The following two kinds of column constraints can be specified:

38

NOT NULL constraint:
Specify this constraint when NULL is not permitted as column data. Specify NOT NULL.
Unique constraint:
Specify this constraint when duplicate values are not permitted as column data. Specify UNIQUE or PRIMARY
KEY.
The unique constraint is detailed later on.
A sample column definition for the ITMNO column of the STOCK table follows. The following conditions are assumed
for ITMNO:

- ITMNO is an integer having up to eight digits.
- ITMNO is unique for each product, and a row of the STOCK table is uniquely identified by ITMNO.
- Arow cannot be inserted unless an ITMNO value is entered.

Example:
Sample column definition for the ITMNO column of the STOCK table

CEREATE TABLE STOCE (ITMMO INTEGER
KNOT MNULL
PREIMAEY EEY

#Column comment definition

A comment consisting of a character string can be specified for a column. A character string of up to 256 bytes can be
specified. If no comment is necessary, omit the specification. An example follows.

Example:
Specify a comment for the ITMNO column in the STOCK table.

CREATE TAELE STOCK [ITMNO SMALLINT...CCMMENT 'PRODUCT-NO' |

T

comment definition

mUnique constraint

The unique constraint can be specified as a constraint for a group of several columns within a table. This type of
specification is called a table constraint. A unique constraint can also be specified as a column constraint for a single
column of a table.

With a unique constraint specification, the specified column or group of columns cannot have the same value or group
of values in more than one row. The value of the specified column or values of the group of columns are determined
uniquely within the table. The unique constraint is specified by UNIQUE or PRIMARY KEY.

$UNIQUE

Specify UNIQUE in the following situation. The table is not permitted to have more than one row with the same value
or values for the specified column or group of columns. The specification format is as follows.

UNIQUE {cofwmn-mame [{, cedumir-pame} ...

NOT NULL must already be specified in the column definition for any column for which UNIQUE is specified.

The next example defines the STOCK table with the constraint that two or more rows cannot have identical values in
both the ITMNO and PRODUCT columns.

39

Example:

Sample table constraint specification for a group of columns

CREATE TABLE BTOCK { ...,

UNIQUE ({(ITMNO ., PRODUCT)

i i

Colufikth Hativg CohHmn D
/]\

Ubique cemtzaicn ko the tahle

The STOCK table for which the unique constraint of this example has been specified cannot have rows such as [3]
and [4] in Figure: Sample data that violates the unique constraint. Rows [3] and [4] in Figure: Sample data that violates
the unique constraint violate the unique constraint because they both have 123 as the ITMNO and they both have
REFRIGERATOR as the PRODUCT. Rows [1] and [2] do not violate the unique constraint because the ITMNO values
differ even though the PRODUCT value is the same. Similarly, rows [5] and [6] and rows [7] and [8] do not violate the
unique constraint. If the unique constraint were specified only for the ITMNO column, then rows [3] and [4] and rows
[5] and [6] in Figure: Sample data that violates the unique constraint would violate the unique constraint.

[Figure: Sample data that violates the unique constraint]

ITMNO PRODUCT STOCKQTY WHCODE
[1]- 110 TELEVISION 83 2
[2]- 1 TRLEVISION 90 2
[3]- 123 REFRIGERATOR 60) 1
[4]- 123 REFRIGERATOR 75 1
[5]- 140 CASSETTE DECK 120 2
[6] - 140 TELEVISION 0 2
[7]- 226 REFRIGERATOR 8 |
[8] - 227 REFRIGERATOR 15 1

#PRIMARY KEY

One or a combination of columns used for determining that a row in a table is unique is called a primary key. The
value specified for primary keys must be unique for each row in a table. The specification format is as follows.

PRIMARY EEY (coduinn-nomie (4, cefwmmm-pamme} ... 10

NOT NULL must already be specified in the column definition for any column for which PRIMARY KEY is specified.
PRIMARY KEY can only be specified once within a table definition.

The next example specifies the unique constraint related to the ITMNO column of the STOCK table as a table
constraint.

Example:

Sample unique constraint specification for the ITMNO column as a table constraint

40

CREATE TABLE STOCK (...,

PRIMARY KEY {ITHMNO)

ool i s

Undoue consiraind fior the lable

mTable comment definition

A comment consisting of a character string can be specified for a table. A character string of up to 256 bytes can be
specified. If no comment is necessary, omit the specification. An example follows.

Example:

Specify a character string comment for the STOCK table.

! i
{ CREATE TABLE STOCK (ITMNO SMALLINT NOT NULL, i
i COMMENT ‘' STOCK ITEMS, STOCK QUANTITIES. AND WAREHOUSES TABLE' |

T

Cuomnenent definttien |

2.6.4 Table definition for multimedia data storage

This section explains how to define a table that stores data types such as image and voice. This type of data is stored
in a BLOB-type column.

To define a BLOB-type column of 31 kilobytes or more, specify SEQUENTIAL or OBJECT as the table storage
structure.

If OBJECT is used as the data storage structure, the following conditions are added to the definition of a table for
storing numeric values and characters.

1. Only one BLOB-type column for data exceeding 31 kilobytes can be specified, and the column must be
specified as the last column in the table.

2. The NOT NULL constraint must be specified for the column described in item 1.

3. The data type for columns other than the column described in item 1. must be fixed length.

4. An ALTER TABLE statement for changing a table definition cannot be described in item 1.

For more information on storage structure, refer to "2.7 Definition of Storage Structure."
Example:

The following is an example in which the PRODPHOT table is defined in schema S1 when
SEQUENTIAL is used as the data storage structute. In this sample, ITMNO is defined as a column for
non-BLOB-type data. Next, PRODPHOTO is defined as a column for one-megabyte BLOB-type data.

CREATE TAELE S1.PRODPEOT (ITMNO SMALLINT PRIMARY KEY NOT NULL,
PRODPHOTO BLOE (1M))

2.6.5 View definition

Define a view using the CREATE VIEW statement. Views are used to simplify data manipulations by application
programs and to join multiple tables and process them as a single table. Views are also used to increase the
independence of application programs and data.

A view definition defines the following items:

- Table name (view name)
- View column list

41

- Column name
- Column comment definition
- Query specification
- Table (view) comment definition
A sample view definition for the inventory management database follows. This view definition defines a view consisting
of the rows of the ITMNO and STOCKQTY columns of the STOCK table for which STOCKQTY is at least 50.

Example:
CREATE VIEW statement that defines the MASS_STOCK view

é CREATE VIEW MAZS STOCE (ND, OTY)

Table v o view Yiew codomn lisg

é COMMENT *LISE OF PRODUCT HUMBERS FOR WHICH STOCK QUANTITY IS5 AT LEAST S0

:
T :
Cooaraenl geliniliong

AS SELECT ITMNG, STOQUECEY FROM STOCES . STOCE WHERE STOCEOTY »>= 50

Imguery spoceficnnion

mTable name (view name)

Specify a name to be assigned to the view. For the table name, specify up to 36 alphanumeric characters beginning
with an alphabetic character.

A view name is unique in a schema.
Example:

Sample view name specification

CREATE VIEW MASS STOCE (...
CREATE VIEW L.STOCES(...

mView column list
Specify column names for the columns that form the view.
#Column name

Specify names for each of the columns that form the view. For the column name, specify up to 36 alphanumeric
characters beginning with an alphabetic character.

A column name is unique in a view.
Example:

Define a view having column names NO and QTY.

CREATE WIEW MASS_ STOOK (N0, {TY)

#Column comment definition

A comment consisting of a character string can be specified for each column in the view. A character string of up to
256 bytes can be specified. If no comment is necessary, omit the specification. An example follows.

Example:

42

Specify a comment for the NO column in the MASS_STOCK view.

. CREATE VIEW MASS_STCOCK (NG CCMMENT ‘PRODUCT-MG', ...)

T

Comment definition

mQuery specification
The query specification indicates which portion of the base table forms the view.
Example:

Define the view named MASS_STOCK. Let the ITMNO and STOCKQTY columns of the STOCK table
be the NO and QTY columns of the view, respectively.

CREATE VIEW MASS_STCOCK (NG, QTY)
AS SELECT ITMRGC, STOCKQTY FROM STDCKS.STOCK

mTable (view) comment definition

A comment consisting of a character string can be specified for a view. A character string of up to 256 bytes can be
specified. If no comment is necessary, omit the specification. An example follows.

Example:

Specify a character string comment for the MASS_STOCK view.

| CREATE VIEW MASS STOCK (MO, QTY)

T

| COMMENT “LIST OF PRODUCT WUMBERS POR WHICH STOCK QUANTITY IS AT LEAST 50 ‘
i i
i Conment dedinition i

2.6.6 Trigger definition

Define a trigger using the CREATE TRIGGER statement. In a trigger definition, specify a trigger event and a
procedure to be started. As the trigger event, specify a table data update method that starts the trigger. As the
procedure to be started, specify a procedure to be processed by a triggered SQL statement.

Triggers are classified into the following groups according to the purpose of the trigger:
- Simple trigger
- Update-and-add trigger
- Trigger for calling a procedure routine

mSimple trigger

The user can define a simple operation, such as insertion of data into another table, deletion of data from another
table, or updating of data in another table, so that the operation is automatically executed when a table is updated.
Specify a simple INSERT, UPDATE, or DELETE statement as the triggered SQL statement.

The use can only define simple operations. However, the definition is easy because it is not required to define a
procedure routine.

The table updated using the SQL statement that is the source of the trigger cannot be updated using the triggered
SQL statement.

43

mUpdate-and-add trigger

For a row added to a database using the INSERT statement or updated using the UPDATE statement, the user can
use a trigger to automatically arrange data of the row into columns. That is, a table updated by an SQL statement that
causes the start of a trigger can be updated in processing of the triggered SQL statement.

For example, the timestamp indicating the time when a column in a row has been updated can be placed in another
column, and the name of the user who updated the row can be placed in another column too. This type of trigger is
called an update-and-add trigger.

mTrigger for calling a procedure routine

The user can call a procedure routine by specifying the CALL statement in the triggered SQL statement.

By using the procedure routine, the user can define a procedure that consists of multiple SQL statements as a
triggered SQL statement. In addition, the user can use a trigger to define data integrity and consistency that is
customized according to the user's desired application requirements.

Using triggers can simplify application programs and construct a highly reliable system because the system can
automatically set information in tables and databases as described above.

Sample trigger definitions follow.

Example 1: Simple trigger

If the order price in a row added to the ORDER table exceeds five million, the ORDER_TRIGGER
trigger adds the customer name, product price, and order quantity to the EXPENSIVE_ORDER table.

Sample trigger definition

CEEATE TRIGGER ORDER_TRIGGER
AFTER INSERT CN ORDER
REFERENCING NEW LS NEWREC
FOR EACH ROW
WHEN [NEWREC . PRICE*NEWREC . ORBERQTY = 5000000}
INSERT INTO EXFENSIVE ORDER
VALUES (NEWREC . CUSTOMER, HNEWREC.FPRICE, NEWREC . ORDERQTY)

Operation

44

Order table

c Pri Ot der
ustoener| Product tice Quartity
51 123 AB000 (2w
&1 124 G000 A0
&1 140 2000 a0
653 111 57400 a0
74 226 11 7000 20
14 227 140400 10
14 251 350 q00
IMSERT c—y &0 420 145000 A0
Adds data to another table
Fxpensive order table in the same datahase.
. Ot der
Customer Price Quastity
653 208000 a0
14 54000 120
(516 57400 an
[MEERT c—§ &0 148000 A0 “— |

Example 2: Update-and-add trigger

This trigger sets the differential value, variable date and time, and executor name if a stock quantity in
the STOCK table decreases by 10 or more.

Sample trigger definition

CREATE TRIGGER =1. UPDATE_ADD_TRIGGER
AFTER. UFDATE OF STOCKQTY OM 51 STOCK TABLE
EEFEFEMNCING MNEW A5 NEWEEC OLD A5 OLDEEC
FOE. EACH ROW
WHEN (OLDEEC. STOCKQTYNEWEREC, STOCKQTY »=10;
UFDATE 51. 3TOCK TABLE 35ET DEFFERENTIAL VALUE=COLDEEC STOCEQTY-MEWEREC. STOCK QTY
. VARIABLE DATE = CUREENT TIMERTANP
LEXECUTOR = CURRENT_USER
WHERE ROW_ID =MNEWRECREOW _ID

Operation
Application program Differ. :
UPDATE S1. STOCK TABLE o | oy, | enal | ganable | B
SET STOCKQTY = & value
WHERE ...
[20 — 8 12 2001 ... dzerh

\\\i

Undate_and_add trigger

If this trigger is defined and an SQL statement that updates the STOCK table is executed, the update operation
specified in the triggered SQL statement is automatically executed. To define an update-and-add trigger, specify
ROW_ID in the WHERE clause in the triggered SQL statement.

Example 3: Trigger for calling a procedure routine
When a line is entered to the ORDER table, the

trigger "ORDER trigger 2" calls a procedure routine

"ORDER routine." The ORDER routine checks the consistency of the entered data. Then, it changes a
stock quantity in the STOCK table according to the ordered quantity.

Sample procedure routine definition

CREATE PROCEDURE STOCKES.0RDER ROUTIME

i

IN WEW MERCHAMWDISE SMALLINT,
IN NEW ORDERATY SMALLINT
)
BEGIN
-- SQL YARIABLE DECLARATION
DECLARE SGLSTATE CHAR(ED:
DECLARE SULMEG CHAR{256);
DECLARE POINT SMALLINT;
DECLARE STOCKQTY INTEGER;:

-- COWDITION DECLARATION
DECLARE IMPUT ORDERQTY _INWALID
DECLARE INPUT IMTEMMO_INYALID
DECLARE STOCK _IMSUFFICIEMT
DECLARE OTHER
-- HAWDLER DECLARATION
DECLARE EXIT HAWDLER FOR WOT FOUMD
BEGIN
IF (POINT = 20 OR POINWT = 303 THEN
RESIGHAL IMPUT ITEMNO_IWYALID
"ORDER: IMPUT ERROR: WALUE OF MERCHAMDISE IS IMYALID™;

COMDITION FOR SOLSTATE® BO0017;
COMDITION FOR SOLSTATE™ g00027;
COWDITION FOR SOLSTATE™ BOO0D3';
COWDITION FOR SOLSTATE™ B09897;

ELSE
RESIGMAL OTHER ERROR °ORDER: ERROR:
&N UMEXPECTED DATA_MNOT_FOUND ERROR OCCURREDT;
EMD IF;
END;
DECLARE EXIT HAMDLER FOR SQLEXCEPTIONM
EEGIN

RESIGMAL:; -- RETURMW THE OCCURRED ERROR As IT IS,
END;
-- THIS PROCESSIMG
-- (1) INPUT CHECK
SET POINT = 10;
IF (WNEWORDERGTY < 13 THEN
SIGNAL INPUT ORDEROTY_IMYALID "ORDER: INPUT ERROR: ORDERATY_IWWALID'
END IF;
-- (2) STOCKQTY CHECK
SET POINT = 20;
SELECT STOCKQTY INTO STOCKQTY FROM STOCKS. STOCK
WHERE ITEMMWO = MWEW MERCHANDISE
WITH OFTIOW LOCK _MODECEXCLUSIYE LOCK);:
IF (WEW ORDERQTY > STOCKOTY) THEM
SIGNAL STOCK _IMWSUFFICIENT "ORDER: ERROR: STOCK _INSUFFIGIENT
END IF:
-- {33 ORDER
SET POINT = 30;
UPDATE STOCKS. STOCK
SET STOCKQTY = STOCKATY - MEW ORDERQTY
WHERE ITEMMO = MEW MERCHANDISE:
END

Sample trigger definition

46

CREATE TRIGGER STOCK:. ORDER TRIGGER 2
AFTER INSERT 0OM STOCKS. ORDER
FOR EACH ROW
CALL STOCKS. ORDER ROUTIME (NEW. WERCHANDISE, MEW. ORDERGTY):

Operation
ORDER TABLE
Customer | Merchandise | FRICE |[ORDERQTY
Application program
INSERT ... >
hé
| —
I Ordertrigger 2
Nortnal or error (*13
'
P-ﬁig:?;?ﬁﬁig STOCK TABLE
IF (INPUT CHECK). . o ITEMMNO | PRODUCT [STOCKQTY | WHCODE

SELECT STOCKATY ., _|
UPDATE STOCKS. 5TOCK
SET STOCKATY =

*1 Ifthe order routine detects an invalid input walue, the following error occurs in the INSER. statement.
JYPL065E An error ocourred in the triggered SOL staternent of the trigger "order trigger 2" of the schema
"STOCKS." Detail message =JYPI550E An exceptionis sent out from the SIGIMAL staternent.

An exception message="CORDER: ERR.CR: 3TOCK _INSUFFICIEMNT."

As described above, if a procedure routine and a trigger are defined when an SQL statement that updates the table is
executed, the procedure routine specified in the triggered SQL statement is automatically executed to suppress any
updating that may impair data consistency. The user can define a trigger that checks table for every linked row of the
rows that reference one another in the procedure routine sot that data integrity between the tables can be ensured.
The user can also define a trigger that automatically deletes corresponding data in child tables when a row in the
parent table is deleted.

However, do not define any complex transaction logic with a trigger. A trigger operates as an extension of table
updates that start the trigger. No transaction can be controlled in any trigger. Create complex transaction logic with
stored procedures, and specify that application program are to call procedure routine directly.

mTrigger operation

A trigger operates as follows.

- Triggers are executed in the following sequence. Each chained trigger is executed in units of rows, following
this same rule.

Executes an SQL statement that updates the table for which a trigger is defined.

Loops the row affected by the SQL statement.

Moves to the row to be updated or deleted by the SQL statement.

Executes the defined BEFORE trigger.

Updates, deletes, or inserts the row according to the SQL statement in step 1).

. Executes the defined AFTER trigger.

- If a trigger event is defined more than once for the same table, triggers are executed in no particular sequence.
Consider the execution sequence to not have an effect on triggers specified with the same trigger operation
point.

- When data load (rdbsloader command) or database reinitialization (rdbfmt command) is executed using the
utility function, any trigger defined for the execution target table does not operate.

- To update the table updated by an SQL statement that starts a trigger in the triggered SQL statement, use an
update-and-add trigger. To define such an update-and-add trigger, specify the UPDATE statement in which
ROW_ID is specified in the WHERE condition of the triggered SQL statement. For this trigger, specify AFTER
as the trigger operation point and INSERT or UPDATE as the trigger event. With another type of trigger, the
table updated by an SQL statement that starts the trigger cannot be updated in processing of the triggered
SQL statement.

QR LN=

47

- Chained triggers cannot be executed by updating the triggered SQL statement specified by an update-and-add

trigger.

- If the trigger defined for the table updated by the triggered SQL statement is a trigger other than an

update-and-add trigger, a chain of triggers is executed. If a trigger is executed again as an extension of its own
execution processing, an error occurs.

- A triggered SQL statement operates as the transaction that executes the SQL statement starting the trigger. If

LOCK_MODE is specified in the SQL statement that starts a trigger, the triggered SQL statement operates,
assuming that the same LOCK_MODE is implicitly specified in each SQL data manipulation statement
executed by the triggered SQL statement.

- When a database is updated by a triggered SQL statement, the unique and NOT NULL constraints defined for

an updated table are checked in each SQL statement. If the CALL statement is specified, the constraints are
checked in each SQL statement defined in the CALL statement.

- If an error occurs in a triggered SQL statement, execution of the SQL statement that has started the trigger is

canceled with an error. If the CALL statement is specified as the triggered SQL statement, an error may occur
during execution of an SQL statement in the called procedure routine. In this event, execution of SQL
statements can continue in accordance with the error handling method specified in the procedure routine.
Alternatively, execution of the CALL statement can be assumed to cause the error, and execution of the SQL
statement that starts the trigger can be canceled with an error.

- If the CALL statement is specified as a triggered SQL statement, a transaction rollback exception may occur in

the called procedure routine (SQLSTATE exception code: 40). In this event, the transaction containing the SQL
statement that starts the trigger is automatically rolled back.

mNotes on defining a trigger

Note the following points about defining a trigger.

- If a subquery is specified in an SQL statement that starts a trigger, the table specified by the subquery cannot

be updated by the triggered SQL statement.

- If a row with a unique constraint in the table has been updated using the search routine of the UPDATE

statement, using an SQL statement for updating multiple rows may temporarily cause some data to not be
unique. When data is not unique, the row whose updating causes the start of the trigger cannot be referenced
temporarily in the extension of the CALL statement specified as the triggered SQL statement of the executed
trigger. For this reason, if the procedure routine called by the CALL statement must reference the row whose
update causes the start of the trigger, specify the appropriate arguments of the CALL statement to pass the
necessary row values.

- Privileges required when a trigger is defined

The user who wants to define a trigger must have the CREATE privilege for the schema for which the trigger is
defined, TRIGGER privilege for the table for which the trigger is defined, and privilege corresponding to the
SQL operatlon specified in the triggered SQL statement.
To specify the INSERT statement: User must have the INSERT privilege for the table specified in the
triggered SQL statement.
- To specify the DELETE statement: User must have the DELETE privilege for the table specified in the
triggered SQL statement.
- To specify the UPDATE statement: User must have the UPDATE privilege for the table specified in the
triggered SQL statement.
- To specify the CALL statement: User must have the execution privilege for the procedure routine
specified in the triggered SQL statement.

- Privilege check when a triggered SQL statement is executed

When an SQL statement starts a trigger and the triggered SQL statement is executed, no privilege check is
performed for the triggered SQL statement. The user who executes the application program does not need the
privilege for the table specified in the triggered operation.

2.6.7 Procedure routine definition

Define a procedure routine using the CREATE PROCEDURE statement. For details about the procedure function,
refer to the "RDB User's Guide: Application Program Development." A sample definition that sets procedure PROC001
in the STOCKMN_DB database follows.

Example:

48

Define PROCO001.

é CREATE PROCEDURE PROCOOL{IN KEY¥1l INTEGER)

T T

Foutine nams Parameter declaration

COMMENT ‘CRDER EEQUESTS FOR IWISOFFICIENT STCOCE BPRODUCTS

BEGIN Comment definition

DECLARE STCQCEQTY_V INTEGER:
SELECT STOCEQTY INTC STOCEQTY WV FROM STOCES.STOCE Compound statement

END

#Procedure comment definition

A comment consisting of a character string can be specified for a procedure routine. A character string of up to 256
bytes can be specified. If no comment is necessary, omit the specification.

2.6.8 Function routine definition

Define a function routine using the CREATE FUNCTION statement. For details of the function routine function, refer to

the "RDB User's Guide: Application Program Development." A sample definition for user-created function routine
USERO001 follows.

Example:

Sample definition for user-created function routine USERO001

CEEATE FUNCTION USEED0L (N IMNTEGEE, IM INTEGER }

Routine narne Parameter declaration
EETUERM?Z INTETGER LANGUAGE C

Feturn data type

HANME 'AB CIT)EFG " LIBEARY ' ﬂlsrﬂncalﬂi‘?ﬂibuserl.sn '

Svmbol name Library

2.7 Defining a Storage Structure

After the logical structure has been defined, define the storage structure. The storage structure definition is then
stored in the RDB dictionary.

The two kinds of storage structure definitions are DSO definitions and DSI definitions. A table DSO and a table DSI
are defined for a table created by a logical structure definition. In addition, if an index is to be defined for a table, an
index DSO and an index DSI are defined.

A storage structure is defined by executing a DSO definition statement and a DSI definition statement.
For details about storage structures, see Chapter 4 "Storage Structure."

Figure: Storage structure definition procedure shows the storage structure definition procedure.

49

[Figure: Storage structure definition procedure]

ROE dicticnary

Table 0S0 definition (CREATE DS

Index, DS definifion (CREATE DSOY EtD_FEI?E shuciure
defirndi

N informakan
v Table 0S| defindion {CAEATE DS}

| Index, DS dafinitien (CREATE DSY)

. Scope definition (CREATE SCOPE)

mDSO definition

The DSO definition specifies the type of storage structure for storing data and rules such as whether to apply split
table operation.

The two types of DSO definitions are table DSO definitions and index DSO definitions.
#Table DSO definition

A table DSO definition specifies the type of storage structure for storing data and rules such as whether to apply split
table operation for a base table. Use the CREATE DSO statement to specify a table DSO definition using.

The storage structures for base tables can be categorized according to the size of the stored data. The storage
structures for handling character and numeric data are different from the storage structures for handling multimedia
data. For information about handling multimedia data, see 2.7.2 "Table DSO definition for multimedia data storage."

#Index DSO definition

An index DSO definition defines the columns that form the index and information such as the type of storage structure
for storing index data. Use the CREATE DSO statement to specify an index DSO definition.

mDSI| definition

A DSI definition specifies an association with the database space where the data is actually stored and information
such as split key values for performing split table operation.

The two types of DSI definitions are table DSI definitions and index DSI definitions.
#Table DSI definition

A table DSI definition specifies an association with a database space according to a table DSO definition. The table
DSI definition also specifies information such as split key values for performing split table operation. Use the CREATE
DSI statement to specify a table DSI definition.

#Index DSI definition

An index DSI definition specifies an association with a database space according to an index DSO definition. Use the
CREATE DSI statement to specify an index DSI definition.

Storage structure definition statements consist of table and index DSO definition statements and DSI definition
statements. Details about these definition statements are explained in 2.7.1 "Table DSO definition," 2.7.3 "Index DSO
definition," 2.7.4 "Table DSI definition," and 2.7.5 "Index DSI definition."

mScope definition

Scope defines the range of table data that is to be manipulated. The user can specify a range in advance so that only
data within that range is processed. Application and release of the scope can be specified for each user.

A sample of using scope follows.
Example:

Define scope TOKYO, apply it to user SUZUKI, and retrieve a limited table from an application
program.

50

1) Define data manipulation range,

Limittag TOKY{O_SCOPE to TOKYG_ORDER_DST and
TOKYO_STOCK_DS)

O5AKA_STOCK_DE!
NARA_STOCK_NSI

- rdbddlex — Scope definjuon ORDER
CREATE SCOPL " able TOKYO_ORDER DSl
TOKYO_SCOPE OSAKA_ORDER_DSH
L351 (TOKY(O_ORDER_DS&I| — “TOEY (O _SCOPE” — WARA_CORDER_[S]
TORNO_STOCK_DSI) TOKY(_ORDER_DS!
TOKYO_STOCK_DSI STOCK TOKYO _STOCK _DSI
tabbe —E

2} Apply dara manipulation Tange o a nser.

Applying TOKYO_SCOPE to user
SUZUK1

rdbddlex, — Applying scope
APPLY SCOPE

“SUFLKT
TORYOD_SCOPE

=
-

TO SUZUKI

3} Retrieve 2 range of the table limited by application program.

Application program
L] °FP prog . TOKY(ORDER_DSI
SELECT ~T SUZUKD is atlowed to retrieve anly ORDER
ORDER TOKYQ_ ORDER_DSI data from the uble [[O3ARA_URDER_DSI
ORDLE table, L NARA_ORDER_DSI
SELECT r | TOKYO STOCK DSl
y STOCK
S'TCCK SUZIUFKI is allowed 1o retrieve onky tahle — OSAKA_STOCK_DSI
TOKYO_STOCK _DS1 data from the STOCK
Executor; SUZUKI ghe,

L NARA_STOCK_DSI

2.7.1 Table DSO definition

Use the CREATE DSO statement to specify a table DSO definition.
Sample table DSO definitions follow.
Example:
Table DSO definitions
- When split table operation is not applied (data structure: SEQUENTIAL)

CEREATE D50 EBTOCK _ DEQ FROM STOCES . STOCK
T T
D5 name Tahle nams
TYPE SEQUENTIAL{PAGESIZE{4], ORDER{0]}

T

Drata struchure

- When split table operation is not applied (data structure: RANDOM)

; CREATE D50 SJTOCK_DSO FROM STOCES.STOCK

T T
DEC name Tahl: name
TYPE RANDOM{PAGESIZEl{4}, PAGESIZEZ{4), CLUSTER{ITBRC))
T |
Diata strchure

- When split table operation is applied (data structure: SEQUENTIAL)

E CREATE DSC ORDEE_DSO FROM STOCES.CORDER

T T
D50 name Table natme
TYPE SEQUENTIAL{PAGESIZE{(4d]. QRDER{(O]]
T
Data structore

WHERE {CUSTOMER} BETWEEN {7) AN (7]

Cohumn name list Ty wahae list Dy wahue list

T

Zplit condition

- When split table operation is applied (data structure: RANDOM)

% CREATE D50 ORDER_DSO FROM STOCKS GRDER

D30 name Tahle name
TYPE EANDOM{PAGESIZELI {4}, PAGESIZEZ (4],
CLUATER (CUSTOMER}

Drata strctare

WHERE {CUSTOMER] BETWEEN CF AND (%}

Cohinn name st Dy vahae list Canuny value bist

Split condition

mDSO name

For the DSO name, specify up to 36 alphanumeric characters beginning with an alphabetic character. The DSO name
must be unique within the database.

mTable name

Specify the name of the base table corresponding to the structure definition. The table name must be qualified by the
schema name.

mData structure

Specify information about the data structure to be used when storing table data. SEQUENTIAL or RANDOM can be
specified when a table storage structure is defined by a DSO definition.

4SEQUENTIAL

When SEQUENTIAL is specified, added data is stored in the order of addition.

Specify the page length at PAGESIZE. Specify ORDER(0) not to reuse a deleted area or ORDER(1) to reuse it. For
more information, see "4.1.1 SEQUENTIAL structure."

52

#RANDOM

When RANDOM is specified, added data is stored in a random order.

For RANDOM, use CLUSTER to specify a key for determining the data storage position. If CLUSTER is omitted, the
data is stored on the basis of the arrangement of PRIMARY KEY in the table definition.

For PAGESIZE1 and PAGESIZEZ2, specify the page sizes of the data structure elements (PRIME and OVERFLOW for
a RANDOM structure).

A RANDOM structure allows a data storage position to be determined by specifying RULE. For more information, see
"4.1.1 RANDOM structure."

mSplit condition

When split table operation is to be applied, specify the split condition. The DSI definition statement specifies the actual
subdivision units. Here, specify only the condition used for splitting.

The rows stored in each subdivision unit is determined as follows. The values set in each column specified in the
column name list determine these rows. In addition, the result of assigning the following values determines the rows.
These values are the values specified by the DSI definition statement for the question marks (?) in the dummy value
list.

If a split condition is specified in a DSO definition statement and if the data structure is RANDOM, the column name
list specified in the split condition must be included in the column name list specified in CLUSTER.

Up to 64 columns can be specified in the column name list. The number of column names in the column name list
must be the same as the number of question marks (?) in each dummy value list.

Table: Data types of columns that can be specified for CLUSTER and column name list shows the data types of the
columns that can be specified for CLUSTER and the column name list.

[Table: Data types of columns that can be specified for CLUSTER and column name list]

Attribute Precision | Scale Length | Notes

SMALLINT - - -

INTEGER - - -

NUMERIC w18 0 o precision | -
DECIMAL Lo ER 0 to pregision | -

CHARACTER - - 1 o 1006 | VARYING cannot be
' specified.

DATE - - -

TIME - - -
TIMESTAMP - - -
INTERVAL - - -

1 When specifying the split condition, specify a length from 1 to 254,

NOT NULL must be specified for the CLUSTER columns and the column name list. The column name list specified by
the split condition is called the split key.

A sample DSO definition for the ORDER table with CUSTOMER and PRODNO of the ORDER table as a composite
split key follows.

Example 1:

Relationship between the number of column names in the column name list and the number of
question marks (?) in the dummy value lists

53

Split condition: WHERE { CUSTOMER } = (23
T

Humher of cobnnm names = 1 Hunher of darory wabe = 1

Split condigion: WHERE (CUSTOMER} EETWEEN 73 AIND L7
: Hurhber ofcoTlunm names = 1 Funber of dummy valie =1 Hunber of dummy vabe = 1
I Split condition: WHERE | PRODUCT, WHCODE) = (7,7} !
Husrber ofcolulm names =2 Humber odejnuny vahe =2
Split condition: WHERE (PRODUCT.WHCODE) BETWEEN L7.7)1 AND (7.7}
Hamber ofcc-]ulm names = 2 Hunber Df'du;r‘mny vabe=2 lmnber of&uTrlmy vahe =2

The number of column names in the column name list is the same as the number of question marks {77 in the
dummy value lists

Example 2:

Table DSO definition with multiple columns as the split key

| CREATE DSO ORDER_DSO2 FROM STOCKS.ORDER |

TY¥PE SEQUENTIAL [PAJESIZEL (4}, ORDER (0})
WHERE (COSTOMER, PROBNO) = (2,7}

2.7.2 Table DSO definition for multimedia data storage

This section explains how to specify a table DSO definition for storing image or audio data. This data is stored in a
BLOB-type column.

For storing data such as image and voice, the record length in a table may exceed the page length. In this case,
specify SEQUENTIAL or OBJECT as the data structure. If OBJECT is specified, assign 32 to PAGESIZE. For the
OBJECT type, split operation is not available, and the associated table definition is conditional. For more information
on table definition conditions, refer to "2.6.4 Table Definition for Multimedia Data Storage." A sample definition follows.

Example:

Table DSO definition for storing multimedia data (SEQUENTIAL)

CREATE DS PRODPHOTO_DEC FROM S1.PRODPHOT

T

D50 name Table name

TYPE SEQUENTIAL (PAGESIZE(3Z), ORDER (1))

Drata strchare

Example:

Table DSO definition for storing multimedia data (OBJECT)

54

CREATE bSO PRODPHOTO_DSC FROM 51.PRODPHOT

T T

D50 name Tahle name

E TYPE OBEJECT (PAGESIZE(22])

T

Drata stmetare

2.7.3 Index DSO definition

Use the CREATE DSO statement to specify an index DSO definition. If a column is used for a conditional search,
define an index for the column used in the search condition to improve the search efficiency.

If PRIMARY KEY or UNIQUE is specified in a table definition, an index DSO definition with the same column
configuration is required. (The order is the same.) If RANDOM is specified for the table data structure, either
PRIMARY KEY or UNIQUE can be associated with CLUSTER KEY. In this case, an index DSO definition is
unnecessary.

In addition, a new index DSO definition can be added for a table in which data has already been stored.
Sample index DSO definitions follow.
Example:

Index DSO definitions
- When the table data structure is SEQUENTIAL

CEEATE DSC PRODUCT IXDSO IMDEX CN STOCKS.STOCE (PRODUCT)

D30 name Table name Cohunn name list
Fey specification
i i

TYPE BTREE{PFAGESIZE] (16} ,PAGESIZEZ (1)}

T

Drata straetore

BY ADDEESS

T

Base representation

CREATE DSO PRODUCT IXROSO INDEX CN STCOCHS.STOCE (PRODUCT!

i i 1

e Tahle name Cohimn name list

Kay specification

TYPE BTREE({PAGESIZE1l(l&} ,PAGESIZEZ (1)}

T

Diata stmetare

BY KEY

Base representation

- When the table data structure is OBJECT

55

CREATE D0 PRODPHOT_TELSO INDEE OM ES1.FPRODEHOT P LT

T T T
DS0 name Tahle natne Cobunn name list
T
Key specification

TYPE ETREE(PAGESIZE] (1é} ,PAGESIZEZ (1} }

T

Drata strachare

EY ALRDEESE

Base representation

mDSO name

For the DSO name, specify up to 36 alphanumeric characters beginning with an alphabetic character.

The DSO name must be unique within the database.

mKey specification

Specify the table name for which the index is to be created and the list of column names forming the index.
#Table name

Specify the name of the base table for which the storage format is to be defined. The table name must be qualified by
the schema name.

#Column name list

Specify the column names for which the index is to be created. Table: Data types of columns that can be specified for
the column name list of an index shows the data types of the columns that can be specified for the column name list of
an index.

[Table: Data types of columns that can be specified for the column name list of an index]

Attribuie Precision | Seale Lengih Noics

SMALLINT - - -
INTEGER - - -
NUMERKC (RORE: (} to precision -
DECIMAL lwe 18 0 W precision -

CHARACTER - - 1o 1000 | VARYING can be
specificd.

DATE - - -

TiME - - -

TIMESTAMP - - -

INTERVAL - - -

mData structure

Specify information about the data structure to be used when index data is stored. Only BTREE can be specified.

56

#BTREE

For PAGESIZE1, specify the page size of the data part.
For PAGESIZE2, specify the page size of the index part.
For details, refer to "4.2.1 BTREE Structure."

mBase representation

Specify the way the index and base are associated. If this specification is omitted, SEQUENTIAL or OBJECT default
to ADDRESS , and RANDOM defaults to KEY.

ADDRESS:
The index and table records are associated according to the storage addresses of the table records. Specify
ADDRESS when the table data structure is SEQUENTIAL or OBJECT.

KEY:
The index and table records are associated according to the cluster key of the table records. Specify KEY
when the table data structure is RANDOM.

2.7.4 Table DSI definition

Use the CREATE DSI statement to specify a table DSI definition. The table DSI definition allocates database space
according to the table DSO definition.
Sample table DSI definitions follow.
Example:
Table DSI definitions
- When split table operation is not applied (data structure: SEQUENTIAL)

| CREATE DSI STOCK_BSE DSC STOCEK LSO

T T

DEI name D50 name

ALLOCATE DATA ON DESF_1 ESIZE 280K

T

Data base space name Allocation size

Space allocation

- When split table operation is not applied (data structure: RANDOM)

| CREATE DST STOCK_DSI DSO STOCK_ DSO

T T

DEI name D50 name

ALLOCATE PRIME ON DESP_1 SIZE 200K .

T T

Database space nate Allacation size

OVERFLOW OM DBSP_1 SIZE BOE
T T
Database space name 4 llocation sime

T

Space allocation

- When split table operation is applied (data structure: SEQUENTIAL)

57

CREATE DEI JAFAN ORDEER_DSI DEO ORDEE_LS50 USING(7L, 7T2)

T T T

DEI name D50 name Iplit key wahie

ALLOCATE DATA ON LCB3SP_2 EIZE ZB0OK

T

Datahase space name Allocation size

Zpace allocation

- When split table operation is applied (data structure: RANDOM)

CREATE DSI JAPFAN ORDER_DSI DSO ORDER_DSO USING(7l, 72)

T T T

D5l name D50 name Zplit key vabie

ALLOCATE PRIME N DBSP_2Q SIZE 200K |,

R

Diatahase space nams Allocation sime

OVERFLAOW ON DESF_Z SIZE BOK

T T

Database space name Allocation size

T

Space allocation

- When the table data structure is object

CREATE DSI PRODPHOTO_DST DE0 PROCPHOTO_ DEO

DEI name D50 narme

| ALLOCATE DATA ON DESE_1 $EZE 100M '

i Database space name Allacation size '

T

Alzeation sizs

mDSI name

For the DSI name, specify up to 36 alphanumeric characters beginning with an alphabetic character.
The DSI name must be unique within the database.

mDSO name

Specify the table DSO name given in a CREATE DSO statement.

With no split table operation, define only one DSI for one DSO definition. However, if split table operation is to be
applied, define multiple DSIs. These DSIs specify split key values. The DSI definitions for split table operation must
include all existing data.

mSplit values

Specify the values for the split condition when split table operation is to be applied.

Specify the constant value for the question marks (?) in the dummy value list. The dummy value list is specified in the
split condition of the table DSO definition. If the split condition includes multiple question marks (?), use commas to
delimit the constant values in order of occurrence. The number of constant values must be the same as the number of

58

question marks (?) specified in the split condition.

The user cannot specify split values to have the storage destination of a given row (data) include multiple DSls. Table:
Specification formats of constants that can be specified for split values shows the specification formats of constants
that can be specified for split values.

[Table: Specification formats of constants that can be specified for split values]

Attribute of corresponding Specitieation format of constant that can he specified For split value
colunam

SMAJTLINT -32768 o 32767 (no decimal poior)

INTTGER, 2IHFAB3048 o 2147483647 {no decimal point)

NUMTRIC(p.) Numher of digits in the integer part {te the left of the decimal point} does

not exceed p - g.

Number of digits in the decimal part (16 the right of the dectimal poing
does not exceed g™

DECIMAL(p. q)

CHARACTER(N} Characier string constant having op (e n characters
DATE 10-character date from years to days

TIME E-character time from hours w seconds
TIMESTAMP 19-character time stanp from years to seconds

INTERVAL stact-field TO end- Interval (years to months, or days to times) indicated by the field
freld specifications {For deteils, see Table: Specification formats of time
interval types that can be specified for split key values.)

n: MNumber ot characlers
p: Precision
g Scala

*1 If a consiant does not contain a decimal point, all digits are included in the integer part.

59

[Table: Specification formats of time interval types that can be specified for split key values]

Type Start field End ficld Explanation of specification
Year and YEAR(p) - p-digit time interval indicating vears
maonth type
MONTH p-digif time interval indicating vears and months
MONTHI(p) - p-digit ime interval indicating months
Day and hour | DAY (p) SECOND p-digit time interval indicating days. hours,
Lype minutes, and scconds
MINUTE p-digit troe inteeval indicating days. howrs, and
minues
HOUR p-digit time intecval indicating days and hours

- p-digit ime intlerval indicaling days

HOUR{p)} SECOND p-digit time interval indicating hours, minutes, and
seconds
MINUTE p-digit time interval indicating hours and minutes

- p-digit time interval indicating hours

MINUTE(p) SECOND p-digit time interval indicaing minutes and
seconds

- p-digit time interval indicanling mimites

SECOND{p) - p-digit time interval indicating seconds

P Pracision of sta fisid (Spacity an integst from 1 to 3.}

mSpace allocation

Specify the physical space to be allocated to the table DSI.

Specify the name of the database space where the data is to be physically stored. In addition, specify the size of the
storage area to be acquired for this DSI within the database space. The acquired storage area is accessed according
to the page size specified in the DSO definition.

mDatabase space name

Specify the name of the physical database space where the data is actually stored.

To store data in multiple database spaces for scalable log operation, specify their names in the same log group.

mAllocation size

Specify an unsigned integer combined with a unit symbol (K or M) to denote the size of the storage area acquired in
the database space. The unit symbol K indicates kilobytes, and the unit symbol M indicates megabytes.

The units to be used for storage in the database space according to the table DSI are determined as follows. The split
condition in the table DSO definition and the split key value specification determine these storage units. Some
examples follow.

Example 1:

Relationship between the number of question marks (?) specified in the split condition and the number
of constants in the split value specification

60

¢ Split condition : WHERE {CUSTCMER] = 123

Famber of doneny vabies = 1

Split value : USING {61}

Murber of constants = 1

éSpliI condition : WHERE {CUSTCMER) BETWEEN {7] AND (7}

Humber of donmy vabes = 2
Split value: USING iel, 71}

Mwber of constants = 2

aplit condition : WHERE {PRODUCT,WHCODE] = (2,7}

Mamber of doneny wahies = 2

Split value: USING {'TELEVISION', 2}

Humber of constants = 2
Split condigion: WHERE {ITMNC,STOCEQTY) BETWEEN (7.7) AWND (7.7)

Muarrber of dartuny vahies = 4

Split value: USING {110,80,25%,100%

Hhuhber of constants = 4

The number of constants is the same as the nmnber of gquestion marks () specified n the split condition,

Create a television DSI by splitting and storing STOCK table data according to PRODUCT and WHCODE values.
Example 2:

Create a television DSI for the STOCK table.

: CREATE DS0O STOCE_DEO -- STOCK mble DSO
FROM STOCES. STOCK
TYPE SEQUENTILL { PAGESIZE ({4},

CRDER (1)}
WHERE {PRODECT,WHCODE) = {72, 2) -— 5pdit data according o PRODUCT znd WHCODE
CEEATE D8I SEOCK_DSI_ TV 2 —— STOCK tabie DS] for warchouse code 2
DEo SPOCE_DSO
USING { ' TELEVISIGH', 2] —-— STOCK wble for priduct TELEVISION and warchouse

ALLOCATE DATAR ON DESP 1 SIZE ZEOK -- codc 2

Create a JAPAN DSI by splitting and storing ORDER table data according to CUSTOMER region. The ORDER table
CUSTOMER numbers are divided by region with the range 71 and 72 representing companies in JAPAN.

Example 3:

Create JAPAN DSI for the ORDER table.

61

CEEATE DSQ ORDER_DSO -- ORDLR table DSO
FROM STOCKS. ORDER
TYPE RENDOM | PRGESIZEL (4},
PAGESIZEZ {4},
CLUSTER (CUSTOMER, PRODNC) |
WHERE {CUSTOMER} BETWEEN {7 AND {Z} -- Dataisspkitand placed according o
-- CHSTOMER nombees.

| CREATE DSI JAPAN_ORDER_DSI -~ ORDIER table TI5] for companies located in JAPAN
; DE0 ORDER_DSO
USING (71,720 -- Namber 71 and 72 indicat: companics located in
ALLOCATE PRIME Ot DESPF_3 SIZE 200, -- JAPAN.

OWVERFLOW O DESP_2 EIEE EBOk

Create a television and refrigerator DSI by splitting and storing STOCK table data according to PRODUCT and
WHCODE values. Set PRODUCT and WHCODE for the split condition, and specify multiple split values.

Example 4:
Create a DSI for products TELEVISION and REFRIGERATOR for the STOCK table.

CEEATE DEO STOCKE_DEO -— STK'K wble DRO

FROM STOCES. STOCK
TYFE SEGUENTILL { PAGESIZE(4),
CRDER(O) }
WHERE {PRODUCT,WHCODE) = (7, 7) - - Split data according to PRODUCT and
-- WHCODE
| CREATE DSI STOCK_DSI_TY_FRIDG -— STOCK rable DS for warchoose codes 2 and |
DSE0 STLCE_DSO
USING {*TELEVISION’,2), {'REFRIGERATOR’,1) -- STOCK tabic for products
ALLOCATE DATA OM DBSP_1 SIZE 280K -- TELEVISION and REFRIGERATOR

Create a sales amount DSI by splitting and storing SALES table data according to FISCAL YEAR and MONTH.
Specify multiple split values.

Example 5:

Create a DS for sales amount of the second half of fiscal years 1999 and 2000 for the sales table.

62

i CREATE DSO SALES_DSO -— SALES wple DSO
i FROM SECOCKS. SALES
TYPE SEQUENTIAL (PAGESIZE (4}, ORDER (O]

WHERE {FISCAL YEAR, MONTH) BETWEEN {7,%) AND (7.7} -- Spludalaaccording o
-- FISCAL YEAR and
-- MONTH
CREATE DSI SECOND_HALF OF FISCAL_YEAR DST —— DS fow second half of fiseal
i DSC SALES_DSa -- 2000 and 2001
USING {2000, 10, 2001, 33, (2001, 10, 2002, 3} -- SALES able for FISCAL
ALLOCATE DATA ON DESP_Z2 SIZE ZS0E -- YEAR and MONFH
SALES table
Fiscat year | Month | Sales amount

2000 4 a5

2000 5 70

2000 3 40

2000 7 60

2000 a 85

2000 a 80

2000 10 100

2000 11 85

2000 12 &0 DE| for the sacond half (Oct. to Mar) .

2001 1 75 of fiscal year 2000

2001 2 &0

2001 3 110

ED.IJI 4 E:U L BSI ar the second hatl

: : : of fiscal year

001 10 120

2001 11 85

2001 12 70 L D5 forthe second half (Ocl, 1 Mar,)

2002 1 a0 of fisgal wear 2001

2002 2 65

2002 3 a0

2.7.5 Index DSI definition

Use the CREATE DSI statement to specify an index DSI definition. The index DSI definition allocates database space
according to the index DSO definition.

A new index DSI definition can be added for a table DSI in which data has already been stored.
Example:

Create an index DSI definition.

63

?CREATE DET PRODUCT _TXDSI IKDEX

DEI name

DE0 PRQDUOCT__IXDSO

: D50 name
; EASE STQOUK_DSI

Tahble DEI name

ATLOCATE INDEX OM DBSP_1 SIZE 40K,
BASE ON DBS¥_1 SIZE J00K

Diatahase space name Allocation size

T

Zpace allacation

mDSI| name

For the database name, specify up to 36 alphanumeric characters beginning with an alphabetic character. The DSI
name must be unique within the database.

mDSO name
Specify the index DSO name given in a CREATE DSO statement.
mTable DSI name

Specify a DSI name indicating the corresponding base table. When split table operation is to be applied, create an
index for each table DSI. When split table operation is not to be applied, can not specify the table DSI name.

mSpace allocation

Specify the physical space to be allocated to the index DSI.

Specify the name of the database space where the data is to be physically stored. In addition, specify the size of the
storage area to be acquired for this DSI within the database space.

mDatabase space name

Specify the name of the physical database space where the index data is actually stored.

To store data in multiple database spaces for scalable log operation, specify their names in the same log group.

mAllocation size

Specify an unsigned integer combined with a unit symbol (K or M) to denote the size of the storage area acquired in
the database space. The unit symbol K indicates kilobytes, and the unit symbol M indicates megabytes.

2.7.6 DSI initialization

A DSI must be initialized before data is stored. This section explains DSI initialization. Figure: Overview of DSI
initialization provides an overview of DSI initialization.

64

[Figure: Overview of DSI initialization]

¥Yihen the INSERT statement of an

When the rdbsloader commend |s vsed application program is used
Databaszs definition Catabase definition
b y
Datsbase gararabion D5} inifalzation
by rdbsicader

Database qenaration
fry the application
program

A DSI must be initialized before data is stored. The rdbfmt command performs DSI initialization. However, when the
rdbsloader command is used to store data, DSI initialization is unnecessary.

In addition, if the DSI is associated with a shared buffer to improve performance, the rdbconbf command must be
executed before the rdbfmt command. For more information on the rdbconbf and rdbfmt commands, refer to the man
command (under UNIX) or the SymfoWARE/RDB online manual (under Windows NT).

An example of DSl initialization follows.
Example:

Initialize created DSls.

rdbconbf -1 STOCKMN_DE.STOCK _DSI POOLL
rdboconbf -1 STOCKMEN DB, JAPAN ORDEE _DSI POOLZ
rdboconbf -1 STOCKMM_DE. ITMMO_IXDET POOL3
rdbfmi -mi -1 STOCKMN_ DB, STOCK_DSI

rdbfmt -mi -1 STOCKMH_DE.JAPAN _ORDER_DSI
rdbfmt -mi -i STOQCKMN_DBE, I'TMMG_IXDSI

2.7.7 Scope definition

A scope is defined by using the CREATE SCOPE statement.
The CREATE SCOPE must be used by the person who defined table DSI.
Example:

Define scope TOKYO.

| CREATE SCOPE TOKYO_SCOPE

T

Scope name

DEI (TOEYO STOCE _DSI, TOEYD _ORDER_DEI)

T

DEI name List

mScope name

Specify the name of a scope that limits the range of DSI names using up to 36 alphanumeric characters beginning

65

with an alphabetic character.

A scope name is unique in a database.

mDSI| name list

Specify the DSI names of tables whose access range is limited as DSI name lists. Each DSI name must be unique in
the database. A DSI that is the same as that of the scope definition statement cannot be specified.

mCaution:

Limiting a data manipulation range with the scope function is only effective for SQL statements of an application
program or rdbupt command. It is not effective for RDB commands such as rdbsloader.

2.8 Applying a Storage Structure Definition

This section explains how to apply a storage structure definition. Application of storage structure definition involves
application of scope definition.

2.8.1 Scope definition application

A scope definition is applied by using the APPLY SCOPE statement. A scope definition can be applied to a user to limit
the range of items in a table that the user is allowed to manipulate.

The executor of the APPLY SCOPE statement must be the user who defined the scope.
A sample scope application follows.
Example:

Apply scope TOKYO to user SUZUKI.

! APPLY SCOPE TORYO_SCOPE

Scope nare

T SUZUET

Privilege identifier

mScope name

Specify the name of the scope applied to the table user with up to 36 alphanumeric characters beginning with an
alphabetic character.

A scope name must be defined by the CREATE SCOPE statement.

A scope name is unique in a database.
mPrivilege identifier

Specify the user identifier of the scope user.

2.9 Simplifying a Storage Structure Definition

This section explains how to simplify a storage structure definition.

When defining a storage structure in a simplified form, use table or index definition. In a table or index definition,
specify a database space to store data. SymfoWARE/RDB automatically defines a storage structure according to the
specification. In this case, the table storage structure is set to SEQUENTIAL and the index storage structure is set to
BTREE. For a multimedia data storage table, SEQUENTIAL or OBJECT can be selected as the table storage
structure; however, split storage is not available.

If a storage structure is defined in a simplified form, DSO and DSI of the table are automatically named in accordance
with the table or index definition. The data length and allocation size are then also automatically determined.

66

A simplified storage structure definition dynamically extends the DSI capacity.

The prefix for naming, the data length, the allocation size, and the DSI capacity extension can be changed by using
parameters in the operating environment file. For a multimedia data storage table, the storage structure can be
selected. For information about the operating environment file, refer to the "RDB User's Guide: Application Program
Development."

2.9.1 Table definition

In a table definition, specify a data space as a storage area for table data. When a storage area is specified, the table
DSO and DSI are automatically defined. In addition, DSI is automatically initialized.

mStorage area specification

Specify a database space as a storage area for actual table data. If a storage area is specified, the table and schema
names should be specified using up to 8 alphanumeric characters beginning with an alphabetic character.

If DEFAULT_DSI_NAME=CODE is specified in the system operating environment file, however, the table and schema
names may be specified using up to 36 alphanumeric characters beginning with an alphabetic character.

The example below defines a base table for an stock management database with a storage structure. Define an
STOCK table belonging to schema STOCKS.

Example:

CREATE TABLE statement defining an STOCK table (with storage area specification)

£REATE TABLE STOCKS,STOCK [ITMNO SMALLINT NOT MIILL,
FRODUCT CHARACTER{ZS5} NOT NULL,
STOCKOTY INTEGER,
WHODE SMALLINT,
PRIMARY KEY{ITMKC)}

COMMENT " Stock item and quantity, warehouse
tabie®
N DBSPACEL

7

Storage avea specification

The above specification has the following definitions:

CREATE TABLE STOCKES.STOCE { ITMNG SMALLINT NOT NULL,
FRODUCT CHARACTER{Z5) NOT NULL,
STOCKQTY INTEGEE,
WHCCQDE SMALLINT,
PRIMARY KEY{LTMNG))

COMMENT 'Stock item and quantity, warehouse
tabler
CREATE DSO #STOCKS#STOCE FROM STOCEKS. 5TCCK
TYPE SEQUENTIAL{PAGESIZE{4}, CORDER{l)!

CREATE DSI #5TOCKS#STOCE DSO #STUCEEASTOCK

ALLOCATE DATA OM DESPACEL SLIZE Z5BK

#Table DSO and DSI names

DSO and DSI of a table are named by combining schema and table names in a table definition. The DSO and DSI
names are the same.

67

"#schema-name # table-name”

b Tahle name specified in CREATE TABLE staternent

Schema name specified in CREATE TABLE statement

Fixed prefix

If DEFAULT_DSI_NAME=CODE is specified in the system operating environment file, however, table DSO and DSI
are named with a 10-diit figure determined by the system.

Examples are given below.
Example 1:

When the schema and table names are character strings

CREATE TABLE STCHES.ORDERS(.. J O DBESPACEL

= D30 name : #STOCKS#ORDERS
DEI name : #STOCKS40RDERS

Example 2:
If DEFAULT_DSI_NAME=CODE is specified in the system operating environment file

CREATE TAELE STOCKSMASTER.ORDERSMASTERL ..] OX DESPACEL

=% DSO name : #3000000155
DET name : #J03434001%5

#Table storage structure

The table storage structure becomes as follows: Note that these are automatically defined by SymfoWARE/RDB.
Storage structure:
SEQUENTIAL structure
Data part page size:
4 kilobytes
Data part allocation size:
256 kilobytes
Area reuse specification:
ORDER(1)

For information about the storage structure, see "2.7 Storage structure definition."

2.9.2 Table definition for multimedia data storage

For a multimedia data storage table, specification of the storage area, and naming a table DSO and DSI are the same
as that for a table of characters and numeric values. The following example is a storage area specification for a table
that is to storage multimedia data and its table storage structure. For information about specifying the table DSO and
table DSI names, see 2.6.2 "Table definition."

Example:

Storage area specification for a table that is to storage multimedia data

68

CREATE TAELE §51.PFRCDFHOT ({ITHMNC SMALLINT PRIMARY EEY NOT NULL,
PRCODFHOTC BLOB(1M) NOT NULL)
ON DBESPACEL

T

Slomiee ans g ation

If DEFAULT_DSI_TYPE is specified for the operating environment file, this specification has the same meaning as of
the definition below.

- At DEFAULT_DSI_TYPE = SEQUENTIAL

CRERTE TRBLE &1. PRODPHOT (ITMNO SMALLINT PRIMARY REY HODT HULL.
PRODPHOTOELDECIMY HOT NULLZ

CREATE L350 #51# PRODPHOT FROM E1.PRODPHOT
TYFE SEQUENTIAL(PAGERIZEC3Z).DRDERCIDD

CREATE DEI #1# PRODPHOT DED #1# PRODPHOT
ALLOCATE DATA DN DBSFACEL SIZE 700000K

M ote:
In this example, 700,000 kilobytes are allocated to the table data
storage area in DEFAULT _TABLE_SIZE of the operating environment file.

- At DEFAULT_DSI_TYPE = OBJECT

CREATE TABLE S1.PRODPHOT [ITMMO SMALLINT PRIMARY KEY MOT MULL,
PRODPHOTO BLOE(1M) MNOT NULL})

CREATE DS #Si#PRODPHOT FROM 51, PRODPHOT
TYPE OBJIECT (PAGESIZE{32}}

CREATE D8I #Si#PRCODPHOT DRSO HS1#PRODPHOT
ALLOCATE DATA ON DBZSPACE]L SIZE 70O0000E

Mote:
In this example, 00,000 kilobytes are allocated to the table data
storage area in DEFALULT_OBJECT _ TABLE_SIZE of the operating ernvironment file.

The table storage structure is defined as follows.

Storage structure:
If the table format does not satisfy the conditions listed below, specify SEQUENTIAL as the storage structure.
If the table format satisfies all the conditions listed below, specify OBJECT as the storage structure. If
necessary, the OBJECT structure can be changed to SEQUENTIAL structure by specifying
DEFAULT_DSI_TYPE for the operating environment file. If this parameter is omitted, OBJECT is assumed to
have been specified.
- Only one BLOB-type column is specified at the end of a table with a size of 32 kilobytes or more.
- Columns other than BLOB-type columns have the fixed-length attribute.
- The NOT NULL restriction is specified for the BLOB-type column.
Page size of data part:
Specify the page size defined in DEFAULT_TABLE_SIZE of the operating environment file in the
SEQUENTIAL structure. The page size should be 32 kilobytes.
In the OBJECT structure, specify a page size of 32 kilobytes.
Allocated size of data part:
For the SEQUENTIAL structure, specify the allocated size of the table data storage area defined in
DEFAULT_TABLE_SIZE of the operating environment file. Reserve a sufficient value, taking into account the
amount of data to be handled.
For the OBJECT structure, specify the allocated size of the table data storage area defined in

69

DEFAULT_OBJECT_TABLE_SIZE of the operating environment file. Reserve a sufficient value, taking into
account the amount of data to be handled.

For information about the storage structure, see 2.7 "Defining a Storage Structure."

2.9.3 Index definition
Use the CREATE INDEX statement to define an index.

In the index definition, specify the columns that form the index key and the database space for holding the table data.
SymfoWARE/RDB automatically generates the index DSO and DSI definitions.

mindex name

Define the name (index name) to be assigned to the index, using up to 8 alphanumeric characters beginning with an
alphabetic character.

Note that the index name can be specified with character strings of up to 36 alphanumeric characters beginning with
an alphabetic character when DEFAULT_DSI_NAME=CODE is specified in the system operating environment file.

To delete the index definition, specify the index definition to be deleted by index name.

mKey specification

Specify the column name of the column that is to be the index key. Multiple columns can be combined to form a single
index.

mStorage area specification

After the keyword ON, specify the database space name of the database space for storing the index.

The following example defines the storage structure of an index formed by combining the ITMNO and PRODUCT
columns of the stock management database. The index name is IDX1, and the index is stored in the database space
named DBSPACE1.

Example:
CREATE INDEX statements for defining the STOCK table

CREATE INDEX STOCES . STOCK, IDX1

T T T

Schemp apme. Table npms Endex oame

EEY (ITMNG, PRODUCT)

T

{'ohuma nyme

T

Kzy specibication

COMMEMNT 'Stock table index key: ITHMNC, FPRODUCT'

T

{Zpmmer. definition

ON DBSPACEL

T

Dratabiase A name:

T
Storage amea specification

The preceding specification has the same meaning as the following definition.

70

CREATE DSC B85TQCKSH#ILDHL

INDEX CON STOCKS.STCQCK (ITMNO, PRODUCT)

TYPE BTREE{RAGESIZEL (2], PAGESIZEZ(Z])) BY ADDRESS
CEEATE DSI @STOCESH#IDX] IWDEX DEC @STCOCKSHIDEL

GPTICH (DEGEWERATE]

ALLGCATE BASE CON DBESPACE]l STZE 1GEK,

IWNDEX OW DBESPACE] SIZE 32K

mindex DSO name and DSI name

The index DSO and index DSI names are generated by combining the schema name and index name from the index
definition. The DSO and DSI names are the same.

"Bachema-name # index-name*

T lndex name specificd in CREATE INDEX statcment

ASchema name specified in CREATE INDRX statement

Fixed prefix

If DEFAULT_DSI_NAME=CODE is specified in the system operating environment file, the system assigns 10-digit
names for the index DSO and DSI names.

An example follows.
Example 1:

When the schema name and index name are character strings

CREATE INDEX STOCKS,STOUK,IDX] EEY [.. | ON DBSPACE]L

=% D20 name : BSTOCES#IDN]
D21 name : RSTOCES#IDXN1

Example 2:
When DEFAULT_DSI_NAME=CODE is specified in the system operating environment file

CREATE INDEX STOCES, STOCE. INDIMASTER KEY | ..) O DBSPACE]

=% D5Q name : BOOQQ00QO0017
DI name @ 90000000017

71

mindex storage structure

The index storage structure is as follows:

Storage structure:
BTREE structure

Data part page size:
2 kilobytes

Index part page size:
2 kilobytes

Data part allocation size:
168 kilobytes

Degeneration specification:
Present

Index part allocation size:
32 kilobytes

mindex comment definition

A comment consisting of a character string can be specified for an index if the index is defined with an abbreviated
storage structure definition. A character string of up to 256 bytes can be specified. If no comment is necessary, omit
the specification. An example follows.

Example:

Specifying a comment for an index that has an abbreviated storage structure definition.

CREATE INDEX STOCES.STOCE.IDX1 KEY (ITMNO, PRODUCT:

COMMENT 'STOCK TABLE INDEX KEY: ITMNO, PRODUCT'
T

Crwunest deilniten

ON DBSPACEL

2.10 Defining a Temporary Table

Before using a temporary table, define the temporary table and an index.
A temporary table is created specifically for a user of an application program. Multiple users can use temporary tables
with the same table name. Uses of temporary tables are listed below.

- Extracting data necessary for a user from a database and creating a table containing the data
- Incorporating processing results of a procedure routine into an application program using a temporary table

As described above, a temporary table can be used as a table independent of other application programs to facilitate
development of an application program.

Extracting data necessary for a user from a database and creating a table containing the dat
a

When data manipulated by a user can be limited or if specific data is frequently referenced, creating in advance a
compact table containing necessary data enables smooth processing that is not affected by update operations of
another user.

Temporary tables can be used for such processing. To create a compact table, data can be extracted from the master
table (STOCK table) according to the conditions set for a user and then stored in a temporary table (T1).

72

kM aster table
(STOCK table)

,—'-'"'-'_'_F'_FF'—
(Users) (UserB) (Userc)
Application Application Application
program program [ragram

' I I

Temporary table (T1) Temporary table (T1) Temporary table (T1)

A user can execute the following INSERT statement to create a temporary table (T1) that contains necessary data:

¢ INSERT INTO T1 5
SELECT C1,C2,C3 FROM STOCK TABLE
WHEERE conditional-expression-that-extracts-data-necegsary-for-a-user '

Incorporating processing results of a procedure routine into an application program using a

temporary table

Because a temporary table is created for one user, data can be passed between procedure routines that are executed

consecutively ((1) and (2)) and between an application program and procedure routine ((3) and (4)).

73

Application pragram Procedure routine

/ PROCT

(Transaction
processing

CALL PROCT

Temparary table T1

Stores results |

inT1. \

Procedure routine

CALLPROCY | ———p | FROC2

(2

Fetches data ol
from T1.

(Transaction
proce ssing) Temporary table T2

%

Stores results
inT2.]

Fetches data
fram T2, o

G

Processing results of a procedure routine for multiple transactions that outputs processing results in the same format
can be stored in a temporary table (5) in order to pass the results to an application program (6).

Application program Frocedure routine

PROCT
CALL PROCH /

Selects a transaction
according to the
transaction type.

Transaction type)

Transaction 1
(department A)

stores results
inT1.

Transaction 2
(department E)

),
Stores results Ternporary table T1
inT1.
;531
Fetches data
framT1. -
g

For more specific examples of use, refer to the "RDB User's Guide: Application Program Development.”

When multiple connections are established between an application program and servers, a temporary table is created
for each connection. These temporary tables are independent, and the connections cannot share the temporary
tables.

74

Temporary table T1

Server 1

D eaion CONNEGT

E—

Temporary table T1

CONNECT Server2
EEE——

—"

The user can specify whether to use a temporary table within a session of the application program or within a
transaction. Stored data is erased after the session or transaction terminates.

The storage structure of a temporary table is SEQUENTIAL. The storage structure of the index of a temporary table is
BTREE. The storage structures are automatically defined.

mDefining a temporary table
Use the CREATE TABLE statement to define a temporary table.
A sample temporary table definition follows.
This sample definition defines the STOCK_TEMPORARY table for database spaces DBSP_1 and DBSP_2.
Example:
CREATE TABLE statement for defining the STOCK_TEMPORARY table

' C(REATE GLOBAL TEMPORARY TABLE STOCKS STOCK TEMPORARY

Scherna name Teroporary table narme

(ITKINC S%‘IHLLINT MNOT MNULL, sTOCK QTY T]I\I'['E.GER,

Tahle element Tahle eletnent

FRIWVARY I*TCEY (ITRINOT

Tahle element

: ON CONMITTDELETE ROWS :
F.ow deletion specification

COMMNEMT 'STOCK _CHECK TEWMPORARY TABLE'

! Cotntnent definition !

ON DBSP 1 2, DBSP 2 3

Datahase space name Murmber of users

#Table name

Specify a name to be assigned to a temporary table. Specify up to 36 alphanumeric characters for a table name,
whose first character must be an alphabetic character. The table name must be qualified by a schema name.

#Table elements

Specify the name, data type, default value, and constraint of each column in a temporary table. Specify up to 36

75

alphanumeric characters for a column name, whose first character must be an alphabetic character. Each column
name within the table must be unique.

#Row deletion specification

Specify when to delete a row in a temporary table. If this argument is omitted, the temporary table is assumed to be
used within a transaction, and data stored in the temporary table is deleted when the transaction terminates.

DELETE ROWS:
The temporary table is assumed to be used within a transaction, and data stored in the temporary table is
deleted when the transaction terminates.

PRESERVE ROWS:
The temporary table is assumed to be used in a session, and data stored in the temporary table is deleted
when the session terminates.

#Comment definition

For a temporary table, a comment can be specified with a character string or national character string. A character
string of up to 256 bytes can be specified. Both a character string and national character string can be specified as a
comment. If no comment is necessary, omit the specification.

#Database space name
Specify the name of a physical database space in which to store data.
#Number of users

Specify the number of temporary tables to create in a database space. Specify the number of users so that the total
number of database space users indicates the multiplicity of the application program that uses the temporary tables.

#DS0O name and DSI name of temporary table

The DSO name and DSI name of a temporary table begin with _TEMP.

mDefining an index

Use the CREATE INDEX statement to define an index. In the index definition, specify the columns that form the index
key.

A sample index definition for a temporary table follows.
This sample definition defines an index for the STOCK_TEMPORARY table.
Example:

CREATE INDEX statement for defining an index

' CREATE INDEX STOCKS. STOCK TEMPORARY, STOCK _TEMPORARY [X ,
! T T T !

Schema name Temporary table name Index name

KEY (ITWMINO, STOCKEQTY)
T T
Column natne € olutnn name

1
Key specification

Remarks: KEY (ITMNO, STOCKQTY) is a key specification.
#Index name

Define a name (index name) to be assigned to an index. Specify up to 36 alphanumeric characters for the index name,
whose first character must be an alphabetic character.

#Key specification

Specify the name of a column to be used as the index key. Multiple columns can be combined to form a single index.

76

The index is created in the database space specified in the temporary table definition and paired with a temporary
table.

DESF_1 DESP_2

smc{\ smc{\ smc{_\ sTock smc{_\

TEMF"DRARY B TEMPORARY_L- TEMFORAR™Y_IX Tth.ﬂF‘I:IRARY <. TEMFORARY_LX
£

STOCK STOC K_ STOCK STOC K_ STOCK_
TEMPORARY TEMPORARY TEMPORARY TEMPORARY TEMPORAR™Y

u&i_ff

#Index DSO name and DSI name
The DSO name and DSI name of an index begin with TEMP.

2.11 Privilege Information Definition

Use the GRANT statement to define privilege information. If a resource is defined, only the user who defined the
resource retains all privileges for the resource. In order for another user to access the resource, privilege information
must be defined. The GRANT statement can be used to specify which privileges to grant to specific users for a
resource. A sample definition that specifies privilege information in the stock management database follows. The
definition defines privilege information for the STOCK table belonging to schema STOCKS.

Example:

Grants the reference, storage, and update privileges for the STOCK table.

GRAMT SELECT, INSERT, UPDATE ON STOCK TABLE

Privileges Target name

TO B5ATO, SUZUKI TAMAKA

: I !
i aers granted with privileges (Grantees) :

When defining privilege information, the user may want to specify at one time the privileges necessary for a specific
transaction. In this situation, use of roles is convenient for granting privileges.

mDefining privileges using a role

A role is a group of privileges necessary for a transaction. Define a role to specify the privileges necessary for a
transaction. For efficient privlege management, a role can be defined to grant the role privileges to all users who
perform the transaction.

The procedure for granting privileges using the role function is given below.

1. Define a role.
2. Specify the privileges to be granted in the role.
3. Grant the role privileges to users.

The role function is outlined below.

77

1) Defines a 21 Sets the 3) Grants the role
role. privileges to be privileges to users.
griamed inthe
rale.

IJsers

TANAKA

Transaction A /

_- Role (STOCKS_AZ) ———— ————{ /o ,
'STOCK table — SELECT privilege

'ORDER table— SELECT privilege, INSERT privilege, and r{i

[——» | SLIZLK]

\ SATO

! UPDATE privilege
.C[BMF'ANY —SELECT privilege, INSERT privilege, UPDATE
le privilege, and DELETE privilege

Add a necessary role to grant the privileges to each user.

#1) Define a role.

Use the CREATE ROLE statement to define a role.
A sample role definition for defining role STOCKS_A2 follows.

Example:

CREATE ROLE STOCES A2

Folename

#2) Specify the privileges to be granted in the role.

Use the GRANT statement to specify the privileges to be granted in the role. In the defined role, specify the privileges
granted for accessing a table in a database.

The following table lists the privileges that can be defined in a role by using the GRANT statement.

Privilege Operation

AELECT privilege Privilege to reference datain a table in a database

UPDATE privilege Privilege to update datain a table in a databasze

DELETE privilege Privilege to delete data from atable in a database

INZERT ptivilege Privilege to insert datainto a table in a database

EXECUTE privilage Privilege to execute a procedure or function routine in a database

TRIGGER privilege Privilege to define atrigger for a table

CREATE privilege Privilege to define a table, view table, procedure routine, function routine,

ot sequetce for a schema

ALLOCATE privilege Privilege to allocate atable area in a database space using a DET definition

DROP privilege Privilege to delete a schema, table, view table, procedure routine, function
routine, trigget, of sequence

ALTEER privilege Privilege to update a table definition

INDEX privilege Privilege to define an index for a table

An example of specifying privileges granted for individual tables in role STOCKS_A2 follows.

Example:

78

. GRANT SELECT ON STOCKS STOCK TABLE TO ROLE STOCKS_AZ 5
! 1 T T !

Privilege Target name F.olename

© GRANT SELECT, INSERT, UPDATE OM STOCKS. ORDER TOROLE STOCKS A2 '
v GRANT ZELECT, UPDATE, INGERT, DELETE ON 3TOCES. COLIPANY TO ROLE STOCES_AZ2

#3) Grant the role privileges to users.

Grant the role privileges to users.
Use the GRANT statement to grant the role privileges to users.
An example of granting the privileges granted in role STOCKS_A2 to users SATO, SUZUKI, and TANAKA follows.

Example:

GRANT STOCKS_AZ> TO SATO, SUZUKIL TAMNAKA
1 T T 1
Folename Users granted with privileges (Grantees)

To enable the privileges specified with the GRANT statement in the defined role, execute the SET ROLE statement in
an application program. For details on how to execute the SET ROLE statement in an application program, refer to the
"RDB User's Guide: Application Program Development.”

#Specifying a default role

After a role is created for defining privilege information, a default role can be specified. A default role is a role that is
effective prior to execution of the SET ROLE statement in the application program specified at environment
configuration.

Use the ALTER USER statement to specify a default role.
An example of specifying default role STOCKS_A2 for users SATO, SUZUKI, and TANAKA follows.
Example:

ALTEER. URER. BATO DEFAULT ROLE=STOCHS Al
v ALTER USER SUZUETD DEFAULT ROLE=ETOCES A2 '
i ALTER. URER. TAMAKA DEFAULT ROLE=STOCKES_AZ

2.12 Defining Optimization Information

For more efficient database access, define optimization information. Determine the optimization information by
considering the number of records stored in the database and the changes in the index key caused after the definition
of the storage structure is completed.

After defining the optimization information, fetch and analyze an access plan so the database can be tuned
appropriately. Once the database is tuned by an access plan, optimization information need not be redefined and
updated even if the data status is changed. For details on how to fetch and analyze the access plan, refer to the
SQLTOOL User's Guide.

If it is impossible to estimate the number of records to be stored in a database and variations of the index key,
optimization information can be defined after the data is actually stored.

mWhat is optimization information?

Optimization information is used to efficiently process data according to data status. It is defined for base table and
index DSls, and is used to execute application programs. Optimization information contains values that depend on the

79

status of the data in a database, for example, number of data items, and base table and index DSI space
requirements.

mOptimization information definition opportunity

Optimization information must be determined in an ordinary way, considering the number of records stored in a
database and variations of the index key that will occur after the definition of the storage structure is completed.
Additional opportunities for optimization information definition are listed below.

#When optimization information is defined with values assumed in advance:

- When a database is defined
- When a database is reconfigured
- When a table DSl is added at split storage
- When index is added
- When a large amount of data is added or updated

mDefining optimization information

Use the rdbddlex command to specify the SET STATISTICS statement to define optimization information with the
values assumed in advance. For more information on the SET STATISTICS statement, refer to the SQL Reference
Guide.

Optimization information must be defined for each table or index DSI.

Optimization information can be defined for each table or index DSO; however, the system converts the specified
value for each DSO into a value for each DSI.

Optimization information should therefore be defined for each DSI.
- Definition for each table DSI (data structure: SEQUENTIAL)

| T T T
: D51 name Murnber of records Murnber of !
: pages reguired '

SET STRATISTICE FOR DSI PRODUCT_IXDET

D51 natre
: DIFFERENT KEYC10.100% THDEX HEIGHT (23 PABE(S) I
: T T T :
Different ke walue Index Muraber of

height pages required

The items to be specified depend on the definition method. Details of the optimization information to be defined are
listed below.

80

#Definition for each DSI

Table DSI (SEQUENTIAL structure)

Set item

Specified contents

Default

Humber of records

Specify the mumber of records to be stored.

Cannot be omitted.

Humber of pages required (DATA part)

Apecify the walue obtained at estimation
of the DI size.

Maxitum record size automatically
calculated by the system.

Table DSI (RANDONM structure)

Set item

Specified contents

Default

Humber of records

Specify the mumber of records to be stored.

Cannot be omitted.

Humber of pages required (DATA part)

Specify the value obtained at estimation
of the DE] sze.

Maxitum record size automatically
calculated by the system.

Number of pages tequired (OV ERFLOW patt) | (*1) Hetto 0.
MMaximum tianber of pages(OV ERFLOW patt)| (1) Setto0.
Aorerage number of pages (OV ERFLOVY patt) *1 Hettol.
Table DSI (OBJECT structure)

Set item Specified contents Default

Humber of records

Specify the mumber of records to be stored.

Cannot be omitted.

Humber of pages requited(DATA patt)

Specify the value obtained at estimation
of the D3] size.

Ilaximum record size automatically
calculated by the system.

Index DSI (ETREE structure)

Set item

Specified contents

Default

Humber of pages required (BASE part)

Apecify the walue obtained at estimation
of the DS size.

Maximum record size automati cally
calculated by the system.

Index height

*h

Het by the system according to the number
of records in the related table

HNumber of different key walues

Specify the mumber of different key
walues for each combination of
columns making up the index. [*2)

Cannot be omitted.

*1 Specified when the setvalue is knowin in advance, e.g., the created database has the same
configuration as that of a database defined with optimization infarmation after data was stared.

*2 Specification exarmple:

Suppose that the index consists of the colurmns "part code” and "section code." Column "part code

consists of ten types of codes, and there are 100 combinations of "part code" with "section code "
In this example, the values to be specified are 10 and 100.

#Definition for each table

Set item

Specified contents

Default

Mumber of records

Zpecify the number of records to be stored.

Canniot be omitted.

Mote:

If the table iz split into DSls, (the specified value divided by the number of DSls) is assigned to each D31

81

#Definition for each index DSO

Set item Specified contents Default

Humber of different key vaues Epecifi the number of different key Cannot be omitted.
walues for each combination of
columns making up the index. (1)

™1 Specification example:
Suppose that the index cansists of the columns "part code" and "section code." Column "part code” contains
ten types of codes, and there are 100 combinations of "part code" with "section code . In this example, the
values to be specified are 10 and 100.

Mote:

If the table is split into DSls, (the specified value divided by the number of D31s) is assigned to each D3I

If the calculated resultis 1 ar less, 1is assigned to each DSl

mOutput of optimization information

To output the defined optimization information, use the rdbddlex command to specify the PRINT STATISTICS
statement. For more information on the PRINT STATISTICS statement, refer to the SQL Reference Guide.

Examples of specification and output given below.
Example 1:

Output example of optimization information defined for each table DSI (data structure: SEQUENTIAL or
OBJECT)

FRINT STATISTICE FOR DSl 8TOCE_DST FILE /rdb2/statistics/DE0]/BTOCKE_DEI

DATABASE = 0
L LR EET T T T PP r T PP PP PEPPEE SEQUENTIAL-ype o OBJEC Type DSl information - - - - - - - - 5 .
| D5 - @ :
| RECORD = (3) 5
, FAGE = ;

i1y Database name

(2) DSl name

3y Murmber of records stored in DSI

{4 Murnber of pages containing records

Example 2:

Output example of optimization information defined for each table DSI (data structure: RANDOM)

82

FRINT ESTRTISTICE FOR DEI STOCE_DSTI FILE frdb2/statistics/DE0]S BTOCE_DBT

DATHEASE = []
TR T T RAMDOM-type DSl information ------------------ \
. b5l = 2] '
. RECORD = (] :
© PAGE = €] . 5 | :
' AVERAGE FAGE =] ;
! MAY PAGE = (4]

(1) Databhase name

(2) D3l narne

(3) Mumber of records stored in DS

(& Mumber of pages containing records in PRIME part

(3 Mumber of pages containing records in OWERFLOWY part

(6) Average number of pages in OvERFLOVY part far each packet classified by the RULE
specification (default is determined by the system)in the D50 definition (For details, refer to
Chapter 4, "Strage Structure ")

7 Maximum number of pages in OVERFLOWY part for each packet classified by the RULE
specification (default is determined by the system) in the DSD definition (For details, refer to
Chatper 4, "Strage Structure ™)

Example 3:

Output example of optimization information defined for each index DSI (data structure: BTREE)

FRINT STATISTICE FOR DEI PRODUCT_IXDSTI FILE frdbd/statistics/DEN]/ PRODUCT_IXDSI

DATRBASE = []
R R e LT BTREE-type DSlinformation - ---------------- -
» D8I =)
" PRGE = &3]
v INDE¥ HEIGHT = @
' DIFFERENT KEY =]

(1) Database name

i) D5l name

(3 Mumber of pages containing records in BASE part

() Height of index part (For details, refer to Chapter 4, "Starage Structure ™)
(50 Mumber of different key wvalues of columns making up index

Example: Suppose that the index consists of three columns, "company code," "department code " and
"section code " In this example, information about different key values is output as follows:
- Murmnber of different key values for company code
- Mumber of different key values for combinations of company code with department code
- Mumber of different key values for combinations of company, department, and section codes

Example 4:

Output example of optimization information defined for each table (data structure: SEQUENTIAL or
OBJECT)

FRINT ETRTIZTICE FOR TRELE STOCK FILE /rdb2/statistics/DB01/ STOCK

DATABASE = [0 1]

SCHEMA =

THELE = 3

Fmmmm oo SEQUEMTIAL-type or OBJECT-type DSl information - - - - - --------------- .

:) .

-------------------------- SEQUEMTIAL-type ar OBJECT-type DSHnformation - - - - - e eemeaaaaaaas

(4

D50 =

—————————————————————————— BTREE-type (Dﬁ?linfnrmatinn-—————————————————————————----------

R R LR BTREE-type DElinformation - - - - - === ---m-mmmm e o .
06l

b30 =

RREEEEE R EEEEEEEEE R BTREE-type DElinformation - - === === --=--mmmmm oo g
)]

-------------------------- BTREE-type DSlinfarmation - - - - -« - mm e e m e
06

1] Database name

2] Schema name

i3] Table name

) Optimization information of DS1s making up the takble (output by the number of DSls making
up the table)

%) Tahle index D50 name (output by the number of table index DS0s together with the optimization
information for index DS1s (6) below)

&) Qptirnization infarm ation for DS1s making up the index D50 (output by the number of DSIs
making up the index D30.)

Example 5:

84

Output example of optimization information defined for each table (data structure: RANDOM)

FRINT STRTISTICE FOR TRELE STOCK FILE Ardb2fstatistics /DEO1SSTOCK

DATABASE = LI 1]

SCHEMA =

TABLE =

L L L L L LR L L RANDONHype DElinformation - ------------------mmmmmmmnm- .

: EY :

—————————————————————————————— RAMDOMHype DElinfarmation - - - - - - - - - ccmmea e

i

050 =

------------------------------ BTREE-type DElinformation - -------------------mmmmmmommm s
()

P oo BTREE-type D&l infarmation ------------mmmmmmmiee oo .

5 (6) :

050 =

------------------------------ BTREE-type DElinformation - --------------mmmmmmmmmmm oy
()

R L EEEEE R BTREE-type DElinformation -----------------mmmmmmoo o

: () :

i1y Database name

2} Schema name

i3y Table name

iy Optimization information of D515 making up the table (output by the number of DS1s making
up the table.)

i5) Table index DSO name (output by the nurmber of table index DS0s together with optimization
infarmation of index OSls (&) below.)

(&) Optimization information of D515 making up the index D50 (output by the number of Dls
making up the index D50

Example 6:

Output example of optimization information defined for each index DSO

FRINT STATISTICE FOR INWDEX PRODUCT_IXDSO FILE frdb2/statistics/DE01/PRODUCT _THXDET

DATABRSE = []

DED z

R BTREE-type DSlinfarmation - - - - - - - - e e e e e g
L]

———————————————————————————————— BTREE-type DSlinfarmation - - - - - - - o e e e e e
L]

i1y Database name

{2y Index DSO name

{3y Optimization information of DS1s making up the index DSO (output by the number of DS1s
making up the index DSO.)

85

2.13 Generating a Database

A database is generated by the entry of data in the base tables. Data is entered after the storage destination database
spaces are created, and the definition of logical structures and storage structures for base tables and indexes is
completed.

mDatabase generation methods

A database can be generated in the following two ways:

- By using a data file and the rdbsloader command (DSl initialization unnecessary)
- By creating an application program for database generation and using the INSERT statement (DS initialization
required)

Figure: Database generation methods provides an overview of the two database generation methods: using the
rdbsloader command and using the INSERT statement of an application program.

[Figure: Database generation methods]

External file
L e }
\L Application program
rdbsloader INSERT statement

! !

Database space

#Generating a database by using the INSERT statement

An example of generating a database by using the INSERT statement follows.

For details on the INSERT statement, refer to the "SQL Beginner's Guide."

86

tincludesstdin.h>

maini){

EXEC S¢QL BEGIN GECLAEE SECTIOQN;
char SQLSTATE[E]
char SQLMSG[Z5&] ;
short heoustomer;
shore hprodao;
long hprice;
short hoarderdty;

EXEC SgL END DECLAREE SECTION;

char PR N

for(; ;11
printf{"Eater dara e 1oy
printf("End data entryv ... 2 swou");
scanf {"%co" , &PROC_MOY ;

swibtch{ PROC_MNO)
case '1':
printf{ "Eater customer number.swn');
scanf ["%d, Ehouastomer) ;
printf i "Enter customer oamber. o)
seanf ["%d, Ehprodno ;

EXEC S5QL IMSERT INTO STOCHKS.ORDER(COSTOMER, PRODNO,
PRICE, CRDERQTY)
VALUDES [thoustomer, thprodno, thprice, thorderaty) ;
continue;

: case'2':

i break:

§ 1

§ break;

§ 1

E EXEC SQL COMMIT WORK:

#Generating a database by using the rdbsloader command
A sample for generating a database by using the rdbsloader command follows.

UNIX

E rdbsloader -mi -i STOCE_DB.EAST_ORDER_DST fhome/rdb/kantou.data

E rdbsloader -mi -i STOCE_DB.EAST _ORDER_ISI C: \DEFAUDLTA\USERSA\EANTOU.DATA

For information about the rdbsloader command, refer to "RDB Operations Guide."

87

2.14 Referencing Database Definition Information

After the database is defined, verify the database definition information. This section explains how to print database
definition information.

The rdbprt command prints the database name list and definition information. The rdbddlex command with the PRINT
STATISTICS statement or the rdbups command prints the optimization information. These informations can be used to
perform database management tasks such as confirming the range of database usage.

For details on the PRINT STATISTICS statement, refer to the SQL Reference Guide. For details on the rdbups and
rdbprt commands, refer to the RDB Operations Guide, or the man command (under UNIX) or the SymfoWARE/RDB
online manual (under Windows NT).

This section explains the information printed by the rdbprt command, the command specification method, and the print
format.

2.14.1 Information printed by the rdbprt command

The rdbprt command prints the following information:

- Database name list information
Database name list information lists the names of all databases under the target SymfoWARE/RDB.
- User name list information
User name list information is a list of the names of all users under the target SymfoWARE/RDB.
- Role name list information
Role name list information is a list of the names of all roles under the target SymfoWARE/RDB.
- Definition information
Definition information includes information about a database, schema, base table, view table, temporary table,
trigger, routine, DSO, DSI, scope, database space, sequence, and user, and role definitions.
- User parameter information
User parameter information includes user parameter information used by the target SymfoWARE/RDB.

To print database name list information, specify DB in the m option of the rdbprt command. To print definition
information, specify DEF in the m option of the rdbprt command. The definition information print specifications are:

- DB

- SCHEMA
- TABLE

- TRIGGER
- ROUTINE
- DSO

- DSl

- SCOPE

- DBSPACE
- SEQUENCE
- USER

- ROLE

mltems printed in definition information
The information generated for each print specification type is given next.

#DB specification

- Database name

- Database creator

- Database definition date and time

- Names of schemas belonging to the database

- Names of database spaces belonging to the database

- Log group name of log environment used for database space belonging to the database
- Names of scope belonging to the database

#SCHEMA specification

- Schema name

- Name of database to which the schema belongs
- Schema creator

- Schema definition date and time

88

- Schema comment definition

- Privilege information (only when -p is specified)
- Names of tables belonging to the schema

- Table type (base, view, or temporary table)

- Names of routines belonging to a schema

- Types of routines belonging to a schema

- Names of triggers belonging to a schema

- Names of sequences belonging to a schema

#TABLE specification

- Table, view table, or temporary table name

- Name of database to which the table belongs

- Name of schema to which the table belongs

- Type (base, view, or temporary table)

- Base, view, or temporary table creator

- Table definition date and time and update date and time

- Table comment definition

- Privilege information (only when -p is specified)

- Column information (column name, existence of NOT NULL specification, byte length, data type, DEFAULT
value)

- Table record length

- Table constraint information (PRIMARY KEY information and UNIQUE information)

- PRIMARY KEY information (component column names)

- UNIQUE information (component column names)

- Table DSO name

- Index DSO name

- Routine name

- Routine type

- View information (reference view information, configuration view information, query expression, indication of
whether WITH CHECK OPTION is specified, updatability)

- Trigger name

- Name of the database space to which a temporary table is allocated

- Number of users of the database space to which a temporary table is allocated

#TRIGGER specification

- Trigger name

- Name of database to which the trigger belongs

- Name of schema to which the trigger belongs

- Trigger creator

- Trigger definition date and time

- Name of schema to which the trigger-target table belongs

- Name of trigger-target table

- Type of trigger-target table

- Trigger operation point

- Trigger event

- Name of column to be updated in the trigger-target table

- Correlation name of old and new values in the trigger-target table.

- Execution unit of triggered operation

- Execution condition of triggered operation

- Table name included in the SQL statement of triggered operation

- Name of schema to which the table included in the SQL statement of the triggered operation belongs
- Type of table included in the SQL statement of triggered operation

- SQL statement of triggered operation

- Routine name included in the SQL statement of a triggered operation

- Name of the schema to which the routine included in the SQL statement of a triggered operation belongs
- Type of routine included in the SQL statement of a triggered operation

- Sequence name included in the SQL statement of a triggered operation

- Name of the schema to which a sequence included in the SQL statement of a triggered operation belongs

#Routine specification

- Routine name

- Name of the database to which a routine belongs
- Name of the schema to which a routine belongs

- Routine creator

89

- Routine definition date and time

- Routine comment definition

- Privilege information (only if -p is specified)

- Parameter information (parameter names, parameter types, modes)

- Related table information (schema name, table name, type)

- Name of a routine called by this routine, name of the schema to which the called routine belongs, and type of

routine

- Name of a routine that calls this routine, name of the schema to which the called routine belongs, and type of

routine

- Procedure routine definition statement
- Symbol name of the execution module that processes the function routine
- Path name of the execution module that processes the function routine

#DSO specification

- DSO name

- Type (table DSO or index DSO)

- Name of database to which DSO belongs

- Related table information (schema name and table name)

- DSO creator

- DSO definition date and time

- Data structure type (SEQUENTIAL, RANDOM, OBJECT, or BTREE, page size for each part, information

[column names] about columns forming the cluster key, existence of NOT UNIQUE specification, storage order
assurance level, page reuse point, and contents of RULE specification)

- Base representation (BY ADDRESS or BY KEY)

- Split condition for subdividing into DSls

- Index degeneration specification

- Information about columns making up the index (column name, data type)
- DSl information (DSI name)

+DsSI

specification

- DSl name

- Type (table DSI or index DSI)

- Name of database to which DSI belongs

- Related table information (schema name and table name)

- Related DSO information (DSO name)

- Related table DSI name

- Related index DSI name

- DSI creator

- DSI definition date and time

- Split key value

- Page reuse point

- Index degeneration specification

- Database space allocation information (allocation part, database space name, allocation size)
- Alarm point and expansion specification information (expansion point, allocation size, allocation candidate

database space name)

- Name of the scope that limits DSI
#SCOPE specification

- Scope name

- Name of database to which the scope belongs

- User ID of the user who defined the scope

- Scope definition date and time

- Name of DSI limited by scope

- User ID of the user to which the scope is applied

#DBSPACE specification

- Database space name

- Name of database to be allocated

- Raw device name (for UNIX)

- File name

- Device type

- Database space creator

- Database space definition date and time

- Log group name of log environment used for database space

90

- Privilege information (only if -p is specified)
Note:
If a DSI exists for which database space has been allocated, the following information is also printed:
- Information on the allocated DSI (DSI name and type)
- Information on the table related to the DSI (schema name and table name)
- Information on the DSO related to the DSI (DSO name)
- Allocation size

#SEQUENCE specification

- Sequence name

- Name of the database to which a sequence belongs

- Name of the schema to which a sequence belongs

- Sequence creator

- Sequence definition date and time

- Sequence number increment interval

- Initial sequence number

- Maximum sequence number

- Minimum sequence number

- Whether to use sequence numbers cyclically

- Number of memory spaces allocated to sequence numbers and number of memory spaces retained with
sequence numbers

- Whether to ensure a sequence between clusters

#USER specification

- User name

- User type

- User management type

- Password status

- User creator

- User definition date and time

- Last date and time when the user information was altered (using the ALTER USER statement)
- Last date and time when the user was connected to a database

- Number of times the user failed to connect to a database

- Name and value of each parameter set for the user

#ROLE specification

- Role name

- User who defined the role

- Role definition date and time

- Role update date and time

- Resource type

- Database name

- Schema name

- Table name (output if the resource type is TABLE)

- Procedure routine name (output if the resource type is PROCEDURE)
- Function routine name (output if the resource type is FUNCTION)
- Sequence name (output if the resource type is SEQUENCE)

- Trigger name (output if the resource type is TRIGGER)

- Schema name (output if the resource type is SCHEMA)

- Database space name (output if the resource type is DBSPACE)
- Privilege type

- Grantor name

- Grantee names

- Whether the user has the privilege to grant a role

2.14.2 rdbprt command specification method
Figure: Sample database list print specification and Figure: Sample definition information print specification show

sample specifications of the rdbprt command. For more information on specifying the rdbprt command, refer to the
man command (under UNIX) or the SymfoWARE/RDB online manual (under Windows NT).

mSample database list print specification

This example prints a list of all databases in a target SymfoWARE/RDB system.

91

[Figure: Sample database list print specification]

rdbprt -m DB

Database list print spe cification

mSample user name list print specification

This example specifies printing a list of names of all users under the target SymfoWARE/RDB.

[Figure: Sample user name list print specification]

rdbprt -m USER

T -
User narme list printing

mSample role name list print specification

This example specifies printing a list of names of all roles under the target SymfoWARE/RDB.

[Figure: Sample role name list print specification]

rdbprt -m ROLE
T

Role name list printing

mSample definition information print specification

If TABLE is specified for the output object and the f option is specified in the rdbprt command, this example prints not
only the table information but also the related DSO and DSI information.

[Figure: Sample definition information print specification]

rdbprt -d STOCKMN_DE -m DEF -f peint.info
Batabasae name Dafinition Oulput range Marme of file whens
information spacificalion cutput object is stared

print spscification
——pnntinfo contants {output ahject)
TABLE (51 5T0OCK)

mSample user parameter information print specification

This example specifies printing a list of user parameter information defined in the target SymfoWARE/RDB.

92

[Figure: Sample user parameter information print specification]

rdbprt -m_ PARAM

User parameter information

2.14.3 rdbprt command print format

Figure: Sample database list print results shows a sample printout for the rdbprt command specified in Figure: Sample
database list print specification. Figure: Sample database output object specification and print results shows a sample
printout for the rdbprt command specified in Figure: Sample definition information print specification. Figure: Definition
information output format for a DB specification to Figure: Definition information output format for a SCOPE
specification show the rdbprt command definition information output formats.

The following figure enable readers to see a print image. However, these figures are not complete figures.

mSample database list print results

[Figure: Sample database list print results]

[Print form at]

/_1 Database name list

Nao. Database name

1 DBO1

DEOZ

DBO3

DEO4

DBOS
RDBI_DICTIONARY

[y ok, I O o) S

mSample user name list print results

[Figure: Sample user name list print results]

[Print format]
/—’I User name list
MNO. Isername
1 IDE
2 SATO
3 SUZUKI
4 TANAKA
5 WATANABE

93

mSample role name list print results

[Figure: Sample role name list print results]

[Print format]

L’I Role name list

Mo Fole name

1 STOCKS_AZ
2 STOCKS_B1
3 STOCKS_C3

mSample user parameter information print results

[Figure: Sample user parameter information print results]

[Print format]

A Parameter information

INWALID_PASSWORD_TIME = 5
INWALID_PASSWORD_WAIT_TIME =4
MIN_PASSWORD_SIZE = 6
PASSWORD CHANGE_TIME = 0
PASSWORD_LIMIT_TIME = UNUMITED
USER_COMTROL =YES

Remarks: DEFAULT_ROLE is not printed in user parameter information.

It is printed in USER specification in definition information.

94

mSample database output object specification and print results

[Figure: Sample database output object specification and print results]

[Dutpur object specification]

i TABLE (51.5TOCK)

[+

[Prirt format]
A
e, 1 Fable name STOCK

Database name STOCK_DE
Schema Name STOCKS
Ty¥Ea o e EASE
Creabtcy 0 L. STATET
Created date + Mon der 1 17:068:25 2002
Updated date Tye fpr 2 10:00:30 2007

fommeant

'STOCK ITEMS, STOCK QUANTITIES, AND WAREHOUSES TABLE'

Column information

Column nams ITHMNG
MOT WULL comsktraint YES Data length
Data Eype i SHMALLIWT
Default 0 L.
Cermuent
- 'PROGIICE-WO!
Column name PRODUCT

Constraint information

Praimary key congtraint informaticon
Mo Column name
1 ITTEE

Uhdgue Constraint information

D5 information
Base DSC name

Mo,
1
2

MNe. 1l Unicue constraint
M. Column nams
1 ITHMIO
2 PROTGULCT

STOCE_BEc

Index D50 information

DS name
FEODUCT _THDSQ
FRODGUCT

95

mDefinition information output format for a DB specification

[Figure: Definition information output format for a DB specification]

Databhase nawme (1)
Creator 2]
Created date [3)

Schewa information

Mo . Schema name
1 4]
2 4]
3 4]

Database space information

MNo. Datalbhase space name Loy group name
1 (5] (&)
2 £=y (&)
3 (51 =]

Seope informwation

Mo,

1 (7
Z (7
3 (7

96

(11 base name
(23 Database creator
{3) Database name registration date and time
{"day-of-week maonth day hourminutes: seconds calendar-year")
4] narme of schema belonging to the database

(3) Marmne of database space belonging to the database

(6] Log group name of log environment used for database space belonging

to the database

(7) Mame of scope belonging to the database

mDefinition information output format for a SCHEMA specification

[Figure: Definition information output format for a SCHEMA specification]

Ho. 1 Schema name (1}
Database name [2)
Creator — L..... [3)
Created date — [4)
Comment
| [5:|]

Tahle information
No. Tahle name Type
1 6} (7
Z 6} (7
3 6} (7

Boutine information

Ho. Routine name Routine type
1 i8] (9]
2 i8] (9]
3 (8] (9]

Trigger information

Ho. Trigger name

1 (10}

2 (10}

3 (10}
Sequence information

Ho. Jequence name

1 11y

2 11y

3 (11}

(1) Schema name
(2} Mame of the database to which the schema belongs
(3) Schema creator
(41 schema definition date and time
{"day-of-week month day hours:minutes: seconds calendar-year")
Example: "Wan Apr 1 17:06:25 2002"
(9) Schema comment definition
(6} Mame of a table belanging to the schema
(7)1 Table type
BASE : Base table
WIEWW Sview table
GLOBAL TEMPORARY: Temporary table
(8) Mame of a routine belonging to the schema
(9) Routine type
FROCEDURE: Procedure routine
FUMCTION : Function rautine
10y Mame of a trigger belonging to the schema

(11) Mame of a sequence belonging to the schema

mDefinition information output form at for a TABLE specification

[Figure: Definition information output format for a TABLE specification]

No. 1 Table NAWE sewwws [l

Database name
Schema hame
Type

Creator
Created date =3

Updated date 17 [*1)

Comment
\ (8) \

Column information

Column name 0 L..... [N
NOT NULL constraint 1oy Data length [11) [(Byte)
Data type L..e.. [12)
Default ... [13)

Comment
\ (8] \

Column name (9
NOT NULL constraint (10 Data length (11} (Byte)
Data ©¥pe 0 aeeees [12)
Default 0 caeees [13)

Comment
1 {14} 1

Record length [15)

Conztraint information [*1)
Primary key constraint information [*1)
Ho. Column name
1 (16
H [(16)

Tnique Constraint information [*1)
No. 1 Unigque constraint
HNo. Column name
1 (17
z (17
No. 2 Unigque constraint
Ho. Column name
1 (17}
H (17}

Condition of wiew [*Z2])
18]

With check option (19 [*zj

TUpdatable wiewus (200 [*21

Preserve option [21) [*4)

View information
122) 3]

D30 information [*5)
Base D30 name [23)
Index D30 information
Ho. DHED name
1 (24)
z [24)

Routine information
No. 1 FRoutine name 125)
Schema name [26])
Routine type [27)

Trigger information
No. 1 Trigger name 1258
Schema hame [29])

Triggered information
No. 1 Trigger Name 1300
Schema name 131

Used database space information (¥4}
No. Database space nane User nmamber
1 [32) (33)
2 [32) (33)

98

=1 Output only if the specified table is a base tahle
*2 Output only if the specified table is a view table
*3 Output only if the specified table has a related view table
=4 Output only if the specified table is a temporary table
*5 Output only if the specified table is a base or temporary table
(1) Table name
(2) Name of the database to the which the table belongs
(3) Name of the schema to which the table belongs
(4) Table type
BASE . Base table
WIEWY Wiew table
GLOBAL TEMPORARY. Temporary table
(5) Table creator
(6) Table definition date and time
("day-of-week month day hours:minutes:seconds calendar-year")
Example; "Won Apr 1 17.06:25 2002"
(7) Last date and time when the table was altered (using ALTER TABLE)
("day-of-week month day hours:minutes:seconds calendar-year")
(8) Table comment definition
(9) Mame of a column defined for the table

(10) Whether NOT NULL is specified in the column definition
YES: NOT NULL is specified

MO MOT NULL is not specified.

{117 Column data length (in bytes)

(12) Column data type

(13) Walue specified in the DEFALILT clause
(14) Column comment definition

(15) value obtained by adding 1 for each column containing NO in field (10)
to the total of values specified in field (11) for all columnns

(16) Mame of a column forming the unique constraint (PRIMARY KEY)
(17) Mame of a column forming the unique constraint (UNIQUE)
(18) view definition guery expression
(19) Whether WITH CHECK OPTION is specified in the view definition
YES: WITH CHECK OPTION is specified
NO: WITH CHECK OPTION is not specified
(20) view table updatability
YES: Updatable wiew
NO: Read-only view
(21) Temporary table valid range
YES: valid within a session
NO: Valid within a transaction
(22) view information related to the table
Details are given in "view inform ation output format "
(23) Table D3O name defined for the table
(24) D3O name of an index defined of the table
(23) Mame of a routing that references the table
(26) Mame of the schema to which the routine belongs
(27) Type of routine
PROCEDURE: Procedure routing
FUNCTION: Function routing
(28) Mame of a trigger where a change to the table is specified as the trigger event
(29) Mame of the schema to which the trigger belongs

(30) Mame of a trigger for which the SQL statement of the triggered operation
contains the table

(31) Mame of the schema to which the trigger helongs
(32) Mame of 2 database space to which the temporary table is allocated

(33) Mumber of users of the database space to which the temporary table is allocated

[Figure: View information output format]

Feferred to following view information

No. 1 View Name (1)
Database name (2 [*1)
Schema name (3
Creator 4]
Created date 15

Consist of following table/view information -

No. 1 Tebhle/view name 6]
Database name 17
Schema narme oo [£=1]
Type aeeee. 19
Creator (10
Created date [11) fiFel

Column information

Column name 0 L..... [12)

NOT NULL constraint (13)

Data length — L..... (14) (Byte)

Data type ... [15)

Defsult ... [16]) Z

*1 Displayed anly when a wview that references the specified table exists

*2 Displayed anly when the specified table is a view

{1} Marne of view that references the specified table

{2} Mame of database to which the view that references the specified table belongs
{3) Mame of schema to which the view that references the specified table belongs
{4) Creator of view that references the specified table

{3y Definition date and time {"day-of-week month day hourminutes: seconds
calendar-year") of view that references the specified table

Example: "Mon Apr 1 17:06:25 2002"
(6) Mame af table fram which the view was derived
{7) Mame of database to which the tahle from which the view was derived belongs
{8) Mame aof schema to which the tahle fram which the view was derived belongs
(91 Type of table from which the view was derived

BASE: Base tahble

WIEW. Wiew

GLOBAL TEMPORARY. TEMPORARY TABLE

{10y Creator of takle fram which the view was derived

(11

Definition date and time ("day-of-week month day hour:minutes: seconds
calendar-year") of table fram which the view was derived

Example: "mMon Apr 1 17:06:25 2002

(12

Mame of columnn forming the base table or view from which the view was derived

(13

Existence of NOT NULL specification for the column specified in field (12)
YES: NOT NULL specification exists.
MO NOT MULL specification does not exist.

(14

Data length (units: bytes) for the column specified in field (12)
(15) Data type for the column specified in figld (12)

(16

DEFAULT clause definition contents for the column specified in field (12)

100

mDefinition information output format for a ROUTINE specification

[Figure: Definition information output format for a ROUTINE specification]

Ho. 1 Routine name (1)
Databaze name . 12y
§chena name (3
Creator (4
Created date (5
Routine type [L3]
Comment
o !
Paremeter information (#1)
Parameter name . (81
Parameter type . 31
Parameter mode . (10
Paremeter information (%2
Parameter mode . m
Parameter type . (1L
Parameter mode . FETURN
Parameter type . (12
Using table information
No. 1 Table name (13
§chewa name (14)
Type s (15
Called routine information
Ho. Routine name (18]
jchewa name (17
Routine Type . (18)
Calling routine informaticn
No. 1 Routine neme (19
§chewa name . (20)
Routine Type . (21)
Reutine text informatiom (1)
2z)
(2z)
Routine Function information ("2)
Language .o
Syubel (231
Library (24

*1 Output only if a parameter is specified for the procedure routine
*2 Output only if a parameter is specified for the function routing
(1) Routing name

(2) Name of the database to which the routine belongs

(3) Name of the schema to which the routine belongs

(4) Routine creator

(5) Routine definition date and time:

("day-of-week month day hours:minutes:seconds calendar-year")

Example: "Mon Apr 1 17:06:25 2002"
(6) Routine type

PROCEDURE: Procedure routine

FUNCTION: Function routine
(7) Routing comment definition
(8) Name of a parameter of the procedure routine
(3) Data type of the parameter of the procedure routine
(10) Mode of the parameter of the procedure routing

I Input

OUT. Output
(11) Data type of an input parameter of the function routine
(12) Type of return data of the function routing

(13) Name of the table contained in the routine

(14) Mame of the schema ta which the table contained in the routine belongs

(1) Type of tatle contained in the routing
BASE: Base table
VIEW: View table
GLOBAL TEMPORARY. Temporary tahle

(16) Name of routine called by routineg

{17) Name of the schema to which routine (16) called by routine (1) belongs

(18) Type of routine (16) called by routine (1)
PROCEDURE: Procedure routing
FUNCTION: Function routine

(1) Mame of a routine that calls routine (1)

(203 Name of the schema to which routing (19) that calls routine (1) belongs

(21) Type of the routine (19) that calls routine (1)
PROCEDURE: Procedure routine
FUNCTION: Function routine

(22) Definition statermnents for the procedure routine

(source text from "CREATE PROCEDURE" to "END |abel-name")
(23) Symhbol name of the execution module that processes the function routine

(24) Path name of the execution module that processes the function routing

101

mDefinition information output format for a DSO specification

[Figure: Definition information output format for a DSO specification]

No.

1 D30 namwe (1)
Usage type 2]
Database namwe 13
Schema nawe L. ... (4]

Tabhle natwe oo as (=3
Creator L. (6]
Created date 12

Data structure information

Type i e (8]

Page size | (9] | I (10) (K byte]
Page size | (M | B (10) (K hvte)
Order L. [11)

Feuse page point ... (121 (%)
Index degenerate [13])

Cluster key informwation

Tvype caeeas (14
Ho. Column name
1 [15)
Z [15])
3 115)
Rule informaticon
(18]
Base expression [17)
Divide condition
(18]
Fey colun information
Ho. Column name Iata type
1 (13) [20)
2 113 [20)
3 119 [20)
D3I information
HNo. D3I name
1 [21)
2 121)
3 [21)

[*1]
(*1)
[*2)

[*1]

L_____Y,____J

‘—Y—‘I

(*1]

(*z]

(*1]

[*z]

—_—

102

*1 Displayed only for a table DSO
*2 Displayed only for an index D50
(1) DSC name
(2) D3SO type
BASE: Table DSO
IMDEX: Index D3SO
(31 Mame of database to which the D50 belongs
(41 Marme of schema to which the table having the defined DSO belongs
(2 Name of table for which the DSO is defined
(6) DSC creatar
(71 D50 definition date and time
("day-of-week month day hour:minutes:seconds calendar-year")
Example: "Mon Apr 1 17:06:25 2002"
(8) Table or index data structure
(97 Allocation part for which the page size (field{ 103} is displayed
(10} Page size of the allocation part (units: kilobytes)
(11} ORDER specification (0 or 13
Mate: Displayed only when the data structure is SEQUENTIAL
(12) Page reuse point (UNits: %)

Mote: Displayed only when the data structure is SEQUENTIAL and
ORDER(1) is specified

{13) Index degeneration specification
YES Degeneration specification exists.
MC Mo degeneration specification exists.
(14} Cluster key type

MOT UNIQUE: Cluster key having a NOT UNIQUE specification

Mote: Displayed only for @ cluster key having a MOT UMIQUE specification

{15) Mame of column forming the takle cluster key
(16) Contents of RULE specification

Naote: Displayed only when the data structure is RANDOM and
RULE is specified

{17) Base representation

BY KEY: Displayed when the data structure of the table towhich
the DSO belongs is RANDOM

BY ADDRESS: Displayed when the data structure of the table to which

the DSO helongs is SEQUENTIAL or CBJIECT

(18

Split condition

(18

Marne of column forming the index

(20

Data type of column forming the index

(211 DSI name defined far the 050

103

mDefinition information output format for a DSI specification

[Figure: Definition information output format for a DSI specification]

Ho. 1 DST name oo as (]
Usage type 2]
Database name 13
Schema nawme (4]
Table name (5]
D30 name (6]
Creator [N
Created date (a8
Base D3I informaticon -
HMao. Ease D3I name '}
[*1]
1 9]
Felated Index D3I information
Ho. Index DSI nawme
1 (10}
z 110}
(*E)
Diwide walue
Using (11}
Feusze page point (121 (%)
Index degenerate [13) (*1

Allocation information
No. 1 &llocation target (14)
TUsed database space information

Ho. Database space name Allocate size Status
1 [15]) [16) (K Byte) 117
2 [15) [16) (K Byte) 117
3 [15) [16) (K Byte) 117)

No. 2 Lllocation target (14)
Uzed datahase space information
Hao. Databaze space name Allocate size Status
1 [15) [16) (K Byte) 117)
z [15) (16) (K Byrte) [17)
3 [15) [16) (¥ Byte) 117)

Alarm information

Llarm point (18) (K Byte)

expand point (19) (K Byte)

Allocation sizZe (20) [E Byte)

No. 1

&llocation target ..

Stand by database space information

Ho. Database space hame
1 122
2 122
3 122

Scope information

No. Scope name
1 (23
2 (23
3 (23

[*2]

*1 Displayed only for an index O3S
*2 Displayed only for a tahle DS
*a Displayed only when the rdbalmdsi command has heen set

104

(1) DSl name
{2) D3l type
BASE: Table DSI
INDEX: Index DSl
(3 Mame of database to which the DSI belongs
(4) Marme of schema to which the table hawing the defined D31 belongs
(81 Marme of table for which the D51 is defined
(67 Mame of D30 to which the DSl is belongs
(71 DSl creator
(8) DS definition date and time
("day-of-week month day hour:minutes: seconds calendar-year")
Example: "Mon Apr 1 17:06:25 2002"
(97 DSI name of table to which the DSl belongs
(107 DSI name of index related to the DS
(11) Split walues (displayed in value definition order)
(121 Page reuse point (units: %)

Mote: Displayed only when ORDER(1) is specified in the table D30
definition staterment.

(13} Index degeneration specification
YES: Degeneration specification exists.
MO Mo degeneration specification exists.

(14 Allocation part for which database space information (fields (13 to (17))
i5 displayed

(151 Allocation target database space name
(16} Allocation size (units: kilobytes)
(171 Allocation point
INT. Allocated when DSI is defined and rdbgcdsi is executed
ExP: Allocated when size is autornatically expanded
(18 Alarm point (units: kilobytes)
(191 Expansion point (units: kilobytes) for size expansion
(207 Allocation size (units: kilobytes) for size expansion
(21 Allocation elerment for which size is to be expanded
(22) Name of allocation database space for which size is to be expanded

(231 Name of scope that limits DSI

105

mDefinition information output format for a DBSPACE specification

[Figure: Definition information output format for a DBSPACE specification]

Ho. 1 Database space Name (1)
Database name (2]
Faw device name (3]
File name = (4]
Dewice kind (5
Allocate size (6]
Creator 7
Created date (5]
Log group 0 caeae.. [E=0]

DAI information

No. 1 DST NAne .ewwas (10)

Usage T¥pe [11)

Schenma name [12)

Table name [13)

DE0 nawe [14)

Allocate S1Z€ [15) (K byte)
No. 2 DAET name (10}

Usage type [11)

Schema nawme [12)

Table name [13)

DE0 name L..... [14)

Allocate size [15) (K byte)
No. 3 DSI name (10)

Usage T¥pe [11)

Schenma name [12)

Table name [13)

DE0 nawe [14)

Allocate 5128 .uuew. [15) (K byte)

{1) Database space name

(2) Mame of database to which the database space belongs

{3) Mame of raw device where the database space is created
Displayed only when a raw device is used.

{4) Name of the file used to create the database space

Displayed anly when a network or local file is used
(A netwark file can be used with SymfoWWARE Server Enterprise Extended Edition,
SymfoWARE Server Enterprise Edition, and SymfoWWARE Server Standard Edition)

=

Device type
RAMDEYICE: Raw device (displayed anly on a UK system)
LOCAL FILE: Local file (displayed only in Windows NT/200/P)
{B) Allocation size of a database space (in kilobytes)
{7) Database space creatar
(8) Database space definition date and time
{"day-of-week month day hours:minutes:seconds calendar-year")
Example: "MWon Apr 1 17:06:25 2002"
{9) Log group name of the log environment used by the database space
{10y DSl name defined in the database space
{11) DSl type
BASE: Tahle DSI
INDEX: Index DSl
(123 Mame of schema to which the table having the defined DSl belongs
(13) Wame of table for which the DS is defined
{14) Mame of DSO to which the DSI belongs

(157 Amount assigned by DSI (units: kilobytes)

106

mDefinition information output format for a TRIGGER specification

[Figure: Definition information output format for a TRIGGER specification]

Ho. 1 TEigger NANE ... (1]
Database name 12
Schema name ... (3]
Creator s.vaas (4]
Created date 5]

Subject table information

Gchema name (6]

Table name 171

Type L. 181
Trigger active Time (9]
Trigger ewent .eaws [10)

Trigger column information

No. Colum name
1 [11)
2 [11)
3 [11)

01d or new values alias information
OLD vuvwew [12)
NEW (1z)

Trigger action information
Operation [13)

Search condition information

(14)
Contained table information
No. 1 Table name 115)
Schema name [1a)
Type caveas (L7
Triggered 3QL statemant information
(18)
Triggered routine information
No. 1 Routine name (193]
Schema NAame (2]
Type ... [21)
Triggered sedquence information
No. 1 SEMUENCE NANE cueaas [22]
Schema name [23)

(*1]

(2]

1 Qutput onty if the CALL statement is specified a5 the SCAL staternent of the

triggered operation

*2 Qutput only if the SQL statement of the triggered oeration contains

d SECUENCE

107

108

{1} Trigger name
{2} Name of database to which the trigger belongs
(3) Name of schema to which the trigger belongs
{4} Trigger creator
(51 Trigger definition date and time
{"day-of-week month day hourminute:second year"
Example: "Mon Dec 3 17:06:25 2001"
(B) Name of schema to which the trigger-target table belongs
(7} Name of trigger-target table
(B) Type of trigger-target table
BASE: Base table
(93 Trigger operation point
BEFORE: Executes a triggered operation before a trigger operation.
AFTER: Executes a trignered operation after a trigger operation.
(10} Trigger event
INSERT: Inserts a row.
DELETE: Deletes a row.
IUPDATE: Updates a row.

(1

Marne of columnn to be updated in the trigger-target table

{12} Correlation name of old and new values in the trigger-target table
OLD: Old value correlation name
MEWY: New value carrelation name

(13) Execution unit for triggered operation
RO By rows

(14} Execution condition of triggered operation

(18} Name of table contained in SCL staternent of triggered operation

(16) Name of schema to which table contained in SQL statement of
triggered operation belongs

{(17) Type of table contained in SQL statement of triggered operation
BASE: Base table
WIEW: Wiew table
GLOBAL TEMPORARY: Tempoarary table

(18

SCIL staternent of triggered operation

(19

Routing name contained in the SCGL statermnent of the triggered operation

(20) Mame of the schema to which the routing contained in the SQL statement

of the triggered operation belongs

(21

Type of routine contained in the SQL staternent of the triggered operation
PROCEDURE: Procedure routine

FUMCTION: Function routing

(22) Sequence name contained in the SOL statement of the triggered operation

(23) Name of the schema to which the seguence contained in the SQL statemnent of
the triggered operation belongs

mDefinition information output format for a SCOPE specification

[Figure: Definition information output format for a SCOPE specification]

No. 1 So0pe name 1)
Database name 12)
Creator .v.as [3)
Created date 14

DSI information

No. D3I name
1 31
2 5]
3 5]

Apply information

No. Applied auth-ID
1 (&)
2 (&)
3 =)

(1) Scope name
(2) Marne of database to which the scope belongs
(3) User 1D of user who defined the scope

{4) Scope definition date and time
("day-of-week month day hour minute: second year")

(5) Narme of DSl limited by scope

{6) User |D of user to which scope if applied

109

mDefinition information output format of a SEQUENCE specification

[Figure: Definition information output format of a SEQUENCE specification]

Ho.

1

SEUENCE NANE 11}

Database nams

Zchema name
Creator

Created date

Increment

Start number

Max Value
Min Value

...... {11y , (123
...... {13

110

SEQUENCE Name

Mame of the database to which the sequence belongs

Mame of the schema to which the sequence belongs

Sequence creator

Sequence definition date and time

("day-of-week month day hours:minutes seconds calendar-year")
Example: "Mon Apr 1 170625 2002"

Sequence number increment intersal

Initial sequUence number

Maximum sequence number

Minimum sequence number

(107 Whether to Use sEquence numbers cyclically

(11

YES: The CYCLE clause is specified.
MO: The CYCLE clause is not specified.

1 Mumber of memory spaces allocated to sequence numbers

(127 Mumber of memory spaces retained with sequence numbers

(13 Whether to ensure the sequence between clusters

YES: The ORDER clause is specified.

MO The ORDER clause is nof specified.

mDefinition information output format of a USER specification

[Figure: Definition information output format of a USER specification]

NO.l User hame ..., (]
Type o (21
Manage 0 ... (3]
Password status ..., (4] [*1)
Creator ... (5]
Created date (6]
Updated date ..., 71
Last login date — R3]
Login failed time (9]
Parameter information

(10]
(10

*1 Qutput only if the user is a database-specific user.

(7

(8]

(9)

User name

User type

User management type

DEMS: Manages by SymfoWARERDE (database-specific Uuser)
05 Managed by associating the user with an OS5 login name
Password status

MORMAL Mormal status

LOCHK: Disabled status

Iser creatar

ser definition date and time

{"day-of-week month day hours: minutes:seconds calender-year")
Example: "Mon Apr 1 10:05:30 2002

Last date and time when the user information was altered

{using the ALTER USER statement)

{"day-of-week month day hours:minutes:seconds calendar-year")
Last date and time when the user was connected to a database
("day-of-week month day hours:minutes:seconds calendar-year")

Mumber of times the user failed to connect to a database

(10) MName and value of a user parameter specified for the user

(output only if @ user parameter is specified)

For details, see "Sample user parameter information print results.”

111

mDefinition information output format of a ROLE specification

[Figure: Definition information output format of a ROLE specification]

.1 Role name ... ()

Creator

Privilege
(14)

(14)
He.2
3 (s)

Datahase nanel (8)
Schena name (n
Table neme (8)
Procedure naue (%)
Function name (10
Sequence nane (1)
Trigger name 1z
Database space (13)
Wo. FPrivilege Gramtor
1 (14 (15
2 (14] (15]

Role grant information
5_grantable
o

(181
z (18} o)
(181 o

(1) Rale name
(2) User who defined the role
(3) Raole definition date and time
(*day-of-week manth day haurs:minutes:seconds calendar-year")
Example: *Mon Apr 1 10:05:30 2002"
(4) Rale update date and time
(*day-of-week manth day haurs:minutes:seconds calendar-year’y
(5) Resource type
TABLE: Table
PROCEDURE: Pracedure routine
FUNCTION: Function routine
SEQUENCE: Sequence
TRIGGER: Trigger
SCHEMA: Schema
DBSPACE: Database space
(6) Datahase name

(7) Schema name (outaut if the resource type is TABLE, PROCEDURE,
FUNCTION, SEQUENCE, TRIGGER, or SCHEMA)

(8) Table name (output ifthe resource type is TABLE)
(9) Procedure routine name (output if the resource type is PROCEDURE)
(10) Function roLtine name (autput if the resaurce type is FUNCTION)
(11) Sequence name (QUEPUL If the resource type is SEQUENCE)
(12) Trigger name {output i the resource type is TRIGGER)
(13) Database space name (output if the resource type is DESPACE)
(14) Privilege type
When the resource type is TABLE
SELECT. SELECT privilege
INSERT. INSERT privilege
UPDATE: UPDATE privilege
DELETE: DELETE privilege
TRIGGER: TRIGGER privilege
ALTER: ALTER privilege
INDEX: INDEX privilege
DROF: DROF privilege
when the resource type is PROCEDUER
EXECUTE: EXECUTE priviiege
DROP: DROP privilzge
When the resource type is FUNCTION
EXECUTE: EXECUTE priviege
DROF: DROF privilege
when the resource type is SEQUENCE
SELECT. SELECT privilege
DROP: DROP privilzge
‘When the resource type is TRIGGER
DROP: DROP privilege
Wihen the resource type is SCHEMA.
CREATE: CREATE privilege
DROP: DROP privilege
when the resource type is DESPACE
ALLOCATE: ALLOCATE privilege
(18) Grantor name
(16) Grantee names
(17) Whetner the user has the privilege to grant a role
YES: The user has the grant priviege

NO: The user does nat have the grant privilege

112

2.14.4 Printing privilege information

To print privilege information, specify -p in the rdbprt command. Privilege information is printed only for the following
specifications:

- SCHEMA

- TABLE

- ROUTINE

- DBSPACE

- TRIGGER

- SEQUENCE

Figure: Sample privilege information printout shows a sample command specification and a sample printout (SCHEMA
specification). For more information on how to specify the rdbprt command, refer to the man command (under UNIX)
or the SymfoWARE/RDB online manual (under Windows NT).

113

[Figure: Sample privilege information printout]

rdbprt -3 STOCEMM_DEBE -m DEF -f -p print.info

Ho. 1 Schena name [
Database name (2]
Creator ...u.s 13
Created date (4]

Privilege information

Priwvilege CREATE
No. Grantee 15
...... (&)
Grantable 17
Tahle information
No. Table name Tvpe
1 (&) (&3]
2 i3] [£=3]
3 (8 &)
Routine information
No. Foutine name Type
1 (10 (11}
2 (10] (11}
3 (10] (11}

114

(1) Schema name

{2) Mame of database to which the schema belongs

{3) Creator of schema

(4 Schema definition date and time
("day-of-week month day hours:minutes: seconds calendar-year")
Example: "Mon Apr117:06:25 2002"

(5) Privilege grantee (An asterisk (%) is displayed if the privilege was
granted to all authorization identifiers. The privilege grantee is
PUBLIC.)

(6) Privilege grantor

{71 whether the privilege was granted with the "WITH GRANT OPTION"
specification

YES: "WITH GRANT OPTION" specified

NC "WITH GRANT QOPTION" not specified
{8) Mame of takhle belonging to the schema
(9) Table type

BASE. Base table

WIEWY Wiew

GLOBAL TEMPORARY, Termparary table
{10) Mame of routing helonging to the schema
{111 Routine type

PROCEDURE: Procedure routing

FUMCTION: Function routine

Chapter 3 Database Definition Alteration and
Deletion

A database can be used after it has been created. To use the database, create an application program. For
information about how to use an application program to process a database, refer to the RDB User's Guide:
Application Programs Development.

After a database has been created, the user may need to add data items to the designed database. Alternatively, data
items may become unnecessary.

This chapter explains how to alter and delete a database definition. The explanations are given in the following order:
3.1 Altering a Database Definition
3.2 Deleting a Database

3.1 Altering a Database Definition

The user alters a database definition by performing the following operations.

For more information about the SQL statements described in this chapter, refer to the following
manuals:

- SQL Reference Guide
- SQL Beginner's Guide

mAltering the logical structure definition:

- Adding a schema definition (CREATE SCHEMA statement).

- Deleting a schema definition (DROP SCHEMA statement).

- Adding a sequence definition (CREATE SEQUENCE statement)

- Deleting a sequence definition (DROP SEQUENCE statement)

- Adding a table definition (CREATE TABLE statement).

- Deleting a table definition (DROP TABLE statement).

- Altering a table definition (ALTER TABLE statement).

- Adding a view definition (CREATE VIEW statement).

- Deleting a view definition (DROP VIEW statement).

- Adding a trigger definition (CREATE TRIGGER statement).

- Deleting a trigger definition (DROP TRIGGER statement).

- Adding a procedure routine definition (CREATE PROCEDURE statement).
- Deleting a procedure routine definition (DROP PROCEDURE statement).
- Adding a function routine definition (CREATE FUNCTION statement)

- Deleting a function routine definition (DROP FUNCTION statement)

- Altering a comment definition.

- Swapping a table (SWAP TABLE statement).

mAltering the storage structure definition:

- Adding a table data structure organization (DSO) definition (CREATE DSO statement).
- Deleting a table DSO definition (DROP DSO statement).

- Adding a table data structure instance (DSI) definition (CREATE DSI statement).
- Deleting a table DSI definition (DROP DSI statement).

- Adding an index DSO definition (CREATE DSO statement).

- Deleting an index DSO definition (DROP DSO statement).

- Altering the split value of a DSI definition (ALTER DSI statement).

- Addinging a scope definition (CREATE SCOPE statement).

- Applying a scope definition (APPLY SCOPE statement).

- Releasing a scope definition (RELEASE SCOPE statement).

- Deleting a scope definition (DROP SCOPE statement).

115

mDefining optimization information for added definition

If a table and index is added, define the optimization information for them.
- Defining optimization information (SET STATISTICS statement)

mAltering privileges

Adding privilege information (GRANT statement)
- Deleting privilege information (REVOKE statement)
- Adding a role definition (CREATE ROLE statement)
- Adding a privilege to a role (GRANT statement)
- Granting the role privileges to a user (GRANT statement)
- Altering role privilege information (GRANT statement)
- Deleting a role definition (DROP ROLE statement)
- Removing a role privilege (REVOKE statement)
- Deleting a privilege for a table from a role
- Removing the role privileges from a user

Note that when a database definition is deleted or altered, the definition information is deleted or altered. Moreover,
the data itself (table or index) is deleted or altered at the same time. If the deletion or alteration of a database
definition is specified by mistake, important data may also be deleted. Always use care when deleting or altering a
database definition.

The following database is used in the examples in this section:

Database:
STOCKMN_DB
Schema:
STOCKS
Sequence:
SEQUENCE1
Tables:
STOCK and ORDER
View:
MASS_STOCK
Table DSOs:
STOCK_DSO and ORDER_DSO
Table DSls:
STOCK_DSI and WEST_ORDER_DSI
Index DSO:
PRODUCT_IXDSO
Index DSI:
PRODUCT_IXDSI

Because of dependencies between definitions, the user must follow an alteration sequence that conforms to those
dependencies when altering a database definition. For information about basic alteration sequences, see Appendix B
"Sequential Relationships Among Definition Changes."

3.1.1 Altering a logical structure defining

mAdding a schema definition (CREATE SCHEMA statement)

A new schema definition can be added to an existing database definition. To add a schema definition, specify the
CREATE SCHEMA statement in a similar manner as when defining a schema. For details about how to specify the
CREATE SCHEMA statement, see 2.6 "Defining a Logical Structure."

Example:
Adding a schema belonging to STOCKMN_DB.

CREATE SCHEMA STOCES

Schema narne :

116

mDeleting a schema definition (DROP SCHEMA statement)

To delete a schema definition, use the DROP SCHEMA statement. A specification example follows.
Example:

Delete a schema belonging to STOCKMN_DB.

. DROP SCHEMA ETOOKS RESTRI{CT

T

Hame of schema to be delated

When an attempt is made to delete a schema definition, if any of the following definitions subordinate to that schema
exist, the schema cannot be deleted. The user must delete these definitions before deleting the schema definition:

- Sequence

- Table

- View

- Temporary table

- Trigger

- Index

- Storage structure
- Table DSO
- Index DSO
- Table DSI
- Index DSI

- Procedure

- Function routine

However, if the user specifies CASCADE, then even if the preceding definitions exist, all related definitions are
unconditionally deleted.

mAdding a sequence definition (CREATE SEQUENCE statement)

To add a sequence definition to a schema, use the CREATE SEQUENCE statement. A specification example follows.
For details on how to specify the CREATE SEQUENCE statement, see 2.6 "Defining a Logical Structure."

Example:
Adds a definition of SEQUENCE2 to schema STOCKS

' CREATE SEQUENCE STOCKS. SEQUENCE2
' T T '

Schema name Sequence name

: INCREMENT BY 1 START WITH 1 :
: T T !

lncrement Initial »alue

mDeleting a sequence definition (DROP SEQUENCE statement)

To delete a sequence definition, use the DROP SEQUENCE statement. If a base table, view table, procedure routine,
function routine, or trigger references a sequence, the sequence definition cannot be deleted. Delete the definition of
the base table, view table, procedure routine, function routine, or trigger that references the sequence before deleting
the sequence definition. A specification example follows.

Example:
Deletes SEQUENCE1.

117

. DROP SEQUENCE STOCKS. SEQUEMCET
: T T :

' Schemaname Sequence name '

mAdding a table definition (CREATE TABLE statement)
To add a table definition to a schema, use the CREATE TABLE statement. A specification example follows. For details
about how to specify the CREATE TABLE statement, see 2.6 "Defining a Logical Structure.”
Example:
Add a definition of the PRODUCT table to the schema named STOCKS.

| CREATE TBELE
? $TOCKS . PRODUCT {NO $MALLINT NOT NULL, NAME CHAR{25)}, ...)

T T

Zehema name Tahle name

T

Table nathe specification of'base table to be added

mDeleting a table definition (DROP TABLE statement)

To delete a table definition, use the DROP TABLE statement. If a view table, procedure routine, function routine, or
trigger references a base table, the table definition cannot be deleted. Delete the definition of the view table,
procedure routine, function routine, or trigger that references the base table before deleting the table definition. To
delete the view, procedure routine, function routine, or trigger definition that references a base table together with the
table definition, specify CASCADE. Similarly, the CASCADE specification is required to delete any storage structure
definition of a base table together with the table definition.

When a table definition is deleted by the DROP TABLE statement, the base table database data is also deleted at the
same time. If another table name is specified by mistake in the table definition, the definition information will be lost.
Moreover, the important data will be lost as well. Be especially careful when using the DROP TABLE statement.

An example of deleting a table definition follows.
Example:
Delete the STOCK table definition information and STOCK table.

DEOF TAEBLE STOCKES. STOCK CASCADE

: T T T :
i Schema name Tahls name ZASCADE specification i
T

Tahble narme specification of'base table to be deleted

mAltering a table definition (ALTER TABLE statement)

To alter a table definition, use the ALTER TABLE statement. The ALTER TABLE statement can be used to make the
following changes:

- Add a column definition.
- Delete a column definition.

#Adding a column definition

To add a column to a base table, specify addition of a column definition in the ALTER TABLE statement. Only one
column can be added at the end of the existing columns per table definition alter statement. For the SEQUENTIAL

118

structure, data corresponding to one row in a table may exceed one page after a BLOB-type column is added.

Only NOT NULL can be specified as a constraint for the column to be added. If NOT NULL is specified, the DEFAULT
clause must be specified in the column definition.

DEFAULT values are set for existing data.
A specification example for adding a column definition follows.

Example:

Add a PRICE_SOLD column to the ORDER table. Figure: Adding a column to a table shows the result.

ALTER TABLE STOCKS . (ORDER ADD PRICE_SOLD INTEGER

T T

Schema name Table name

T Cohinn definition
Specifization of table to be altered
[Figure: Adding a column to a table]
{HDER tabls
1
CUSTOMER| FRODNG PRICE | ORDERGTY| FRICE_SQLD
61 123 48000 G0 -
g1 124 6400 40
74 351 390 700 -
— . NULL value r Added coiumn

#Deleting a column definition

To delete a column from a base table, specify the deletion of a column definition in the ALTER TABLE statement. Only
one column can be deleted by one table alteration statement. A column cannot be deleted if it is referenced by a view
definition. If an index DSO definition for the column exists, the column cannot be deleted. The index DSO definition
must be deleted first. However, if a unique constraint for the column exists, the column cannot be deleted even if the
index DSO definition is deleted. The number of columns in a table cannot be reduced to zero by deleting a column

definition. To delete all columns, use the DROP TABLE definition. A specification example for deleting a column
definition follows.

Example:
Delete the PRICE column from the ORDER table. Figure: Deleting a column from a table shows the
result.
ALTER TABLE STOCKS . ORDER BROFP PRICE

:

. Schema name Table name Hame of columm to be deleted

Specification of table to be altered

119

[Figure: Deleting a column from a table]

ORBER lable

CUSTOMER| PRODNC | ORDEROTY

81 123 &0
61 124 4
Td 351 P

mAdding a view definition (CREATE VIEW statement)

To add a view definition to a previously defined schema, use a CREATE VIEW statement. A view definition cannot be
altered. To change a view definition, first delete the view definition and then add a new view definition. An example of

adding a view definition follows. For details about how to specify the CREATE VIEW statement, see "2.6 Defining a
Local Structure."

Example:

Add a PHONE_LIST view to the schema named STOCKS.

CREATE VIEW STOCES. PHONE LIST (COMPANY, PHOME!

T T T

Schema name Table name Wiear colmn nare

Hame of viewr to be added
AS SELECT COMPANY, PHONE FROM STOCES. COMPANYT

mDeleting a view definition (DROP VIEW statement)

To delete a view definition from a previously defined schema, use the DROP VIEW statement. If a view table to be
deleted is referenced in another view table, a procedure routine, a function routine, or a trigger definition, the view
definition cannot be deleted. Delete the view table, procedure routine, function routine, or trigger definition that
references the view table to be deleted before deleting the view definition. To delete the view table, procedure routine,

function routine, or trigger definition that references a view table together with the view table definition, specify
CASCADE.

An example of deleting a view definition follows.

Example:

Delete the definition of the view named STOCK_VIEW.

LR RRRE L IRRRE N IRERRS IR RN £ RV ERRE 1 IRRRE 1 IRERNE T INRRR RN RERE 1 RRRE 1 EURRD 0 IRERNEE VORRRR RN RERE 1 RRRE 1 OURRY 0 ORRRE VERRR RO
. CROP VIEW STOCES. STOCE_VIEW CASCADNE

T

Schema HBIHET Table name CASCADE specifization
|

Hame of view to be deleted

mAdding a trigger definition (CREATE TRIGGER statement)

To add a trigger definition, use the CREATE TRIGGER statement. For more information on how to specify the
CREATE TRIGGER statement, see 2.6 "Defining a Logical Structure.”

Example:

Define the trigger ORDER_TRIGGER.

120

CREATE TREIGGER STCOCES.CRDER _TRIGGER -+

T

THgger name

mDeleting a trigger definition (DROP TRIGGER statement)

To delete a trigger definition, use the DROP TRIGGER statement.
Example:

Delete trigger ORDER_TRIGGER.

DRECF TRIGGER STGCES.CRDER TRIGGER

T

THzzer namea

mAdding a procedure routine definition (CREATE PROCEDURE statement)
To add a procedure routine, use the CREATE PROCEDURE statement. For details about how to specify the CREATE
PROCEDURE statement, see 2.6 "Defining a Logical Structure."

Example:

Add PROCO002 to the STOCKS schema.

CREATE FROCEDURE STOCKS.FROCOO2{IN FARAM] INT)

T T

Feontine names Parameter declaration _
BEGIN

DECLARE CQRDERQTY_V i
SELECT CRDERQTY ENTO CORDERQTY_V FROM STOCKS.CRDER ~ Compound starement

END

mDeleting a procedure routine definition (DROP PROCEDURE statement)

To delete a procedure routine, use the DROP PROCEDURE statement. If the schema has another procedure routine
that calls the procedure routine to be deleted, the procedure routine cannot be deleted. To delete all related procedure

routines, specify CASCADE. For details about how to specify the DROP PROCEDURE statement, see 2.6 "Defining a
Logical Structure."

Example:

Delete PROC002 from the STOCKS schema.

DRGP FROCEDORE STOCES. FROCODZ2

T

mAdding a function routine definition (CREATE FUNCTION statement)

To add a function routine, use a function routine definition statement. For details on how to specify the function routine
definition statement, see 2.6 "Defining a Logical Structure."

121

Example:
Defines function routine USER002 to schema STOCKS.

CREATE FUNCTION STOCKS USER0DOZ (N INTEGER, 1M INTEGER)

acherma name Routine narme Parameter declaration

RETURNS INTEGER LAMGUAGE C
'

Feturn data type

' MAME 'ABCDEFG' LIBEARY Yusrlocallibdibuser? .50
T

' Symbol name Library

mDeleting a function routine definition (DROP FUNCTION statement)

To delete a function routine, use a function routine deletion statement. If a function routine to be deleted is specified in
an SQL statement related to a procedure routine or trigger, the function routine cannot be deleted. However,
specifying CASCADE deletes all related definitions.

Example:
Deletes USER001 from schema STOCKS.

i CROFP FUNCTION STOCKS. USEROD1 :
|) T :

Schema name Routine name

mChanging a comment definition

Comment definitions for tables and columns can be changed with the ALTER TABLE statement. An example follows.
Example:

Change the table comment definition.

| ALTER TABLE STACKES ., 3TACK

SOMMENT * BROOUCT RAME, STOCE QUANTITY, STORACE WAREHOUSE, AND SALES PRICE TABLE-

Comment definition ta be changed

Example:

Change the column comment definition.

. ALTEE TRELE STOCES . BTOCE ...

i MODIFY ITMNG COMMENT *PRODUCT (CODE NUMBER' |

Corument defimition to be changed

122

mSwapping a table (SWAP TABLE statement)

The table name exchange in table swapping exchanges the table's relationship with DSO. Use the SWAP TABLE
statement for table swapping. This produces the following effects:

- Data can be transfered in a short time.
- An application program need not be changed.
- Previous views and routines can be used without changing their definitions.

An example of table swapping follows.
Example:

This example shows table swapping when the data for each day is shifted to the day before in a
system managing data by days. For a new day, data is initialized.

. CHWRP TRBLE Table 00 Table 01 (1)
. GWAF TRELE Table 00 Table 0z (2

| SWAP TRBLE Table 00 Table 29 (29 -
© GWAP TABLE Table 00 Table 30 (300

i1] The day's database status

Table 00 Table 01 Table 02 e o o . [TEDlE30
S 19 fthe d (Data for 1 day (Data for 2 days (Data far 30 dayg
(Data of the day) | pafore) hefare) hefare)
v
The day 1 day before 4 dwﬂ et 30 days
efar befare
21 The next day's database status
Tahle 00 Tahle 01 Table 02 P Table 30
[Data of the day) (Data for 1 day iData for 2 days {(Data for 30 days
J hefnrej I:uefl:lre‘,l befare)
60). - 23)-
i

i day (2 days
(The day) hefore hefore

3.1.2 Changing a definition of a storage structure

mAdding a table DSO definition (CREATE DSO statement)

To add a table DSO definition after adding the table definition, use the CREATE DSO statement. An example of adding
a table DSO definition follows. For details about how to specify the CREATE DSO statement, see 2.7 "Defining a

Storage Structure."

Example:

Add STOCK _DSO as the DSO of the STOCK table.

Reused for the day's data

CREATE DSC _STOCE DSC FROM _STOCES.STOCK

Diata stractore

T T ,
Hame of S0 to be added Tahle nams
; TYPE SEQUENTIAL (FPAGESIZE(4), ORDER([0Y) ?
; T ;

mDeleting a table DSO definition (DROP DSO statement)

To delete a table DSO definition from a base table, use the DROP DSO statement. If an index DSO or a table DSI has
been defined for the DSO to be deleted, the relevant DSO definition cannot be deleted. All related index DSO
definitions or table DSI definitions must be deleted in advance.

However, if the user specifies CASCADE, all DSls related to the DSO to be deleted are deleted.
An example of deleting a table DSO definition follows.
Example:

Delete all table DSOs belonging to STOCKMN_DB.

! DROP DSC STOCK_DSO

T

Hame of D50 to be daleted
CROP DS ORDER_DESO

Hame of DEO ta be deleted

mAdding an index DSO definition (CREATE DSO statement)

To add an index DSO definition for a base table for which the table DSO has already been defined, use the CREATE

DSO statement. An example of adding an index DSO definition follows. For details about how to specify the CREATE
DSO statement, see 2.7 "Defining a Storage Structure.”

Example:

Add STOCKNO_IXDSO as the index DSO for the WHCODE column of the STOCK table.

. CEEATE D20 STOCKNO_IXDE0 INDEX ON STOCES.STOCK {(WHCCODE)

T T 7

Hame of index DEC to be added Table narme qualified by schema name Colunn name '
TYPE BTREE {PAGESIZEI{i¢), PAGESIZEZ{l]] i

mDeleting an index DSO definition (DROP DSO statement)

To delete an index DSO definition from a base table, use the DROP DSO statement.

If an index DSI has been defined, the relevant index DSO definition cannot be deleted. All related index DSI definitions
must be deleted in advance.

However, when CASCADE is specified, if the DSO to be deleted is for a base table, all related index DSOs and
related DSls are deleted.

An example of deleting an index DSO definition follows.

Example:

Delete all index DSOs belonging to STOCKMN_DB.

124

PRGOP D50 FRODUCT IXDEO

:

Mame of indexr D50 to be deleted
DROP DSD SPOCKENCG_IXDZO

Harme of ndex DS ta be daleted

mAdding a table DSI definition (CREATE DSI statement)

To add a table DSI definition for a base table for which the DSO has been defined, use the CREATE DSI statement.
Specify each item of the CREATE DSI statement in a similar manner as when defining the storage structure.

An example of adding a table DSI definition follows. For details about how to specify the CREATE DSI statement, see
2.7 "Defining a Storage Structure”.

Example:

Add EAST_ORDER_DSI to STOCKMN_DB. EAST_ORDER_DSI is subordinate to ORDER_DSO and
is defined on the database space named DBSP_3.

CREATE DSI EAST ORDER DSI LSO ORDER DSO DUSING (80, 89)

T T T
Wame of DS to be added D30 name Split ke vahies
ALLOCATE DATA ON CBSP_3 BIZE 1M
T T

Diatabase space name Allocation size

Space allocation

mDeleting a table DSI definition (DROP DSI statement)

To delete a DSI definition from a base table, use the DROP DSI statement. If the DSI to be deleted is a table DSI, and

an index DSI related to it exists, the relevant DSI definition cannot be deleted. All DSI definitions of related index DSls
must be deleted in advance.

However, when CASCADE is specified, if the DSI to be deleted is a table DSI, all related index DSls are deleted.
An example of deleting a DSI definition follows.
Example:

Delete all DSIs belonging to STOCKMN_DB.

125

. DROP DSI PRODUCT_IXDSI
Mame of DEI to be deleted
. DROP DSI STOCK_DST

Hame of DSI to be deleted

DROF DST WEST_ORDER_DST

Hame of D3I ta be deleted

| DROP DEI EAST CORDER DST

i Hame of DSI to be deleted

mAdding an index DSI definition (CREATE DSI statement)
To add an index DSI definition, use the CREATE DSI statement.

CREATE D&l STOCKNO 1x DSl INDE< DSO STOCKEMC | X D50 :
: T T :
: Index DSl name Index D50 narme

: BASE STOCK DSl :
T
Table D=l name

ALLOCATE INDEX OM DESF_4 SIZE 1h, + Space allocation
! BASE ONDBSP_4 SIZE100M + Space allocation '

mChanging a split key value of a DSI definition (ALTER DSI statement)

To change a split key value of a table DSI definition, use the ALTER DSI statement. If the table storage structure is
SEQUENTIAL or RANDOM, the split key value can be changed. An example of changing a split key value follows.

#Integrating DSls

An example of integrating Hyogo data into Osaka data follows.

«Refore modifications

| CREATE D30 DSOG1 FROM SCHO 1. TABLEGL
TYPE SEQUENTIAL {PAGESIZE (&), ORDER {0]]
WHERE (LOCATICH) = {71

CREATE DSI TOKEYQ_DSI DSC DSCOL

USING{'TCKYC'] ALLOCATE DATA ON ...
CREATE DSI OSAEA_DSTI DSC DSCOL

USING{'OS54KA')] ALLOCATE DATA ON ...
CREATE DSI HYGED_DSI DSC DSCOL

USIHNG{ 'HYCO3D'] ALLOCATE DATA ON ...

126

<381 modification examplez

E DROP DSI HYOGD _DST

; ALTER DSEI OSAKA_DSL ALTER USING{ OBAKL"}, {'HYOGO')

T
Split vahie to be changed

| rdbure /I—

Tokyo data _ ™ I_ --- (2) D5l deletion
{3) Split value modification . —
| o ¥
{@)rdbsioader & ...
13 The Osaka data and Hyogo data is output to a file {rdbun| command)
(2} The Hyogo data DS is deleted, —-—--——--——-——- - {rdbddisx command)
(1) The split value is changed by ALTER DSI. {rdbrddlex command)

4) The data cutput to the fite (1)} is loadad at the same time. ------{rdbsloader command)

#Changing the DSI storage range

An example follows in which the number of years of storage is changed for sales data having a three-year storage
period.

«Before modification:

CREATE D50 SALES_DSC FROM STOCHS.SALES

T¥PE SEQUENTIAL [(PAGESIZE(4}, ORDER{D}}
WHERE (¥EAR, MOMTH) = (7, 7?2}

CREATE DSI JAN_DSI DSQ SALES_DSO

USING (io99, 1},.{2000, %),(200L, 1}

CREATE DST FEB_DST DEC SALES D3O

USING {(:1%899, 2],{(2000, 2},4{200%, 2}

CREATE DSI MAR_DET DEC SALES DSO

USING {1%%9, 3],{2000, 3}, {200%, 3}

127

«Example of D381 modification specifications

. ALTER Dl JAM DSl ALTER USING (20001), (2001, 1), (2002, 1)
ALTER DSI FEB DSl ALTER USING (30002, (2001, 2), (2002, 2)
ALTER DSI MAR DSl ALTER USING (2000 3), (2001, 3), (2002, 3)

—_

S
Split wahe to be changed

| March 1399 |

: February 2000 | Match 2000
vy ey Lo
February 2001 Mareh 2001

Storage ranée Eﬁ;ite 1:9; ?:It:é and Storege range Slorage range
speclficatlc-n; ga 5p : speclhcatlcn; speclhcatlcn;
v ¥

2000 [Fabruary 2000 | March zo00 |
January_ 201 | {| February 2001 {__[Maseh_zo0;
| January 2002 Fabruary 2002 March 2002

|

.............

mAdding a scope definition (CREATE SCOPE statement)

To add a scope definition, use the CREATE SCOPE statement. An example of applying a scope definition follows. For
more information on how to specify the CREATE SCOPE statement, see 2.7.7 "Scope definition."

Example:

Add scope OSAKA_SCOPE.

CEEATE SCOPE COEAERE SCOFPE

7

Scope narme

DSI (OSAKA STOCK_DSI, OSAKA ORDER_DSI)

T

D5l name hist

mApplying a scope definition (APPLY SCOPE statement)

To apply an added scope definition, use the APPLY SCOPE statement. An example of applying a scope definition

follows. For more information on how to specify the APPLY SCOPE statement, see 2.8.1 "Scope definition
application."

Example:

Apply scope OSAKA_SCOPE to user SUZUKI.

128

RPPLY SCOPE OSAKR_SCOPE e SUZUKT

T

Zocope name Tser identifier

mReleasing a scope definition (RELEASE SCOPE statement)

To release a scope definition, use the RELEASE SCOPE statement. This statement releases a scope definition that
was applied to a user by the APPLY SCOPE statement.

The statements "RELEASE SCOPE" and "APPLY SCOPE" must be executed by the same user.
An example of using the RELEASE SCOPE statement follows.
Example:

Release the scope "OSAKA_SCOPE" that is currently applied to user "SUZUKI."

EELEASE SCOFE DSAKA_SCOFE

T

Zeope name

FROM STAUKT

User 1dentifier

mDeleting a user scope (DROP SCOPE statement)

To delete a scope definition, use the DROP SCOPE statement. This statement deletes a scope definition that was
applied to a user by the APPLY SCOPE statement.

The statements "DROP SCOPE" and "CREATE SCOPE" must be executed by the same user.
An example of using the DROP SCOPE statement follows.
Example:

Delete scope TOKYO_SCOPE.

DROP SCOPE TORYD SCOPE

T

Scope name

3.1.3 Defining optimization information for added definitions (SET STATISTICS
statement)

If a table and index are added, use the SET STATISTSICS statement to define optimization information for them. An
example of the SET STATISTICS statement follows.

Example:

Define optimization information about an added TOKAI_ORDER _DSI.

SET BTATISTICS FOR DEI TOEAT _ORDER_DSTI RECORD (200}

T T

Mame of the D51 for whickh optimization Humber of recopds
inforhation ic bo be defined

129

mPrecaution when altering a database definition

After a database definition is altered, use the rdbprdic command to confirm the RDB dictionary utilization rate and
estimate the expansion point. This precaution ensures sufficient RDB dictionary space.

For information about estimating the RDB dictionary expansion point, refer to "RDB Operations Guide."

3.1.4 Altering privilege information

mAdding privilege information (GRANT statement)

To add privilege information, use the GRANT statement.
Example:

Adds the deletion privilege.

 GRAMT DELETE ON STOCKS STOCKTAEBLE TO SATO, SUZUKI, TARAKA

: T T T :
' Privilege Object name Privilege grantees |

mDeleting privilege information (REVOKE statement)

To delete privilege information, use the REVOKE statement.
Example:

Deletes deletion privilege.

REVOKE DELETE OMN STOCKS STOCKTABLE FROM SATO SUZURK] TAMARKA,
: T T T ‘
Frivilege Chject name Privilege grantees '

If a privilege is deleted with CASCADE specified, the base table, view table, temporary table, procedure routine, and
trigger defined by the grantees using the privilege are deleted. The following example assumes that SUZUKI created
the PHONE view table using the COMPANY table.

 CREATE WEWY STOCKS PHONE (COMPANY_NAWME, TELEPHONE MUMBER) :
AS SELECT COMPAMNY_MAME, TELEPHOME MUMBER FROM STOCHS COMPANY !

When the SELECT privilege granted to SUZUKI for the COMPANY table is removed, the PHONE view table created
by SUZUKI is deleted.

mAdding a role definition (CREATE ROLE statement)

To add a role definition, use the CREATE ROLE statement. To specify a privilege to be granted for a table in a role and
grant this role privilege to a user, use the GRANT statement.
To add a role, follow the procedure given below.

1. Define a role using the CREATE ROLE statement.
2. Specify the privileges to be granted in the role by using the GRANT statement.
3. Grant the role privileges to a user by using the GRANT statement.

130

Example:
Adds role STOCKS_A2.

GRAMT SELECT ON STOCKS STOCKTABLE TO ROLE STOCKS A, '
GRAMT SELECT, INSERT, UPDATE OM STOCKS. ORDER

: TO ROLE STOCKE _AZ :
GRANT SELECT, UPDATE, INSERT, DELETE ON STOCKS. COMPANY
| TO ROLE STOCKS A2,

GRANT STOCKS A2 TO SUZLIKT TAMAKA, SATO

mAltering role privilege information (GRANT statement)

To alter the role privileges for a table, use the GRANT statement.
Example:
Adds privileges for the STOCK table to role STOCKS_A2.

mDeleting a role definition (DROP ROLE statement)

To delete a role definition, use the DROP ROLE statement. When a role is deleted, the privileges to be granted as
defined with the GRANT statement in the role are also deleted, and the role privileges granted to users are removed.

Example:

Deletes role STOCKS_A2.

mDeleting/removing role privileges (REVOKE statement)

To delete a privilege from a role or remove the role privileges from a user, use the REVOKE statement.

Example 1:
Deletes the SELECT privilege for the STOCK table from role STOCKS_A2.

131

Example 2:

Removes the role privileges from user TANAKA.

3.2 Deleting a Database

The user deletes a database definition by performing a sequence of operations. Figure: Database deletion procedure
shows this procedure.

132

[Figure: Database deletion procedure]

Celete temparary tables (DROP TABLE statement)
Celete temporary table indexes (DROP INDEX statement)

h

Delete scopes (DROP SCOPE statement)

v

Delete index storage structures
(DROP DS staternent and DROP D30 statement)

v

Delete table starage structures
(DROF DSl statement and DROP DS0O statement)

v

Delete procedure routine definitions
(DROF PROCEDURE staterment)

Celete function routine definitions
(DROP FUNMCTION state ment)

v

Delete triggers (DROP TRIGGER statement)

v

Delete views (DROP VIEW statermen)

v

Delete tables (DROF TABLE state ment)

v

Celete sequences (DROF SEQUENCE staterment)

v

Delete schemas (DROP SCHEMA staterment)

v

Delete database spaces (DROP DBSPACE staterment)

v

Delete database (DROP DATABASE statement)

The following database is used in the examples in this section:
Database:
STOCKMN_DB
Schema:
STOCKS
Sequence:
SEQUENCE1

133

Tables:

STOCK, ORDER, and STOCK_TEMPORARY TABLE
Table DSO:

ORDER_DSO
Table DSls:

STOCK DSl and WEST_ORDER_DSI
Index:

STOCK_TEMPORARY_IX
Index DSO:

PRODUCT_IXDSO
Index DSI:

PRODUCT_IXDSI
Database spaces:

DBSPACE_1, DBSPACE_2
Procedure routine:

PROC002
Function routine:

USERO001
Trigger:

ORDER_TRIGGER
Scope:

TOKYO_SCOPE

mDeleting temporary tables

To delete a temporary table, use the DROP TABLE statement.

Example:

Deletes temporary table STOCK_TEMPORARY.

DROP TABLE STOCKE. STOCK TEMPORARY TABELE CASCADE '
5 1
Index narne '

mDeleting temporary table indexes

To delete the index of a temporary table, use the DROP INDEX statement.

Example:

Deletes temporary table index STOCK_TEMPORARY _IX.

DROP INDEX STOCKS. STOCK_TEMPORARY TABLE .
STOCK_TEMPORARY TABLE | ¥ :
1 i

Index name

mDeleting scopes

To delete a scope, use the DROP SCOPE statement.
Example:

Delete scope TOKYO_SCOPE.

134

DEQOP SCOFPE TOEYD SCLPE

T

Seope name

mDeleting index storage structures

To delete index storage structures, use the DROP DSI and DROP DSO statements.
Example:

Delete the index DSI and index DSO belonging the STOCKMN_DB.

. DROP DSI PRCDUCT_TEDST

T

5 DET name i
DRGE DSC PRODUCT _TXDSO
T

D50 name i

When the DSI specified in the DROP DSI statement is deleted, all data stored in the database space allocated to that
DSI becomes invalid.

When the index storage structure is defined by an index definition, use the following method to delete it.
Example:

Delete the index belonging to STOCKMN_DB.

DRCET IWDEX STOCES.STOCK. IDXEL

T

Index name

The index specified in the DROP INDEX statement is deleted. At this time, the index DSI and index DSO are deleted.
mDeleting table storage structures

To delete table storage structures, use the DROP DSI and DROP DSO statements.
Example:

Delete the table DSls and table DSO belonging to STOCKMN_DB.

DROP DST WEST_ORDER_DST

DEL name
DREOP LST STOCE_LISIT

D5l name
DROFP LSC OEDEERE_IEO

T

DE0 name

The table DSls specified in the DROP DSI statements and the table DSO specified in the DROP DSO statement are
deleted.

135

mDeleting procedure routines

To delete a procedure routine, use the DROP PROCEDURE statement. When a procedure routine is deleted, the
privilege information for the procedure is also deleted.

Example:

Delete PROCO002 from the STOCKS schema.

DROF PROCEDURE STOCKS.BROCOOZ
T

i Fontine name

mDeleting function routine definitions

To delete a function routine, use the DROP FUNCTION statement. When a function routine is deleted, privilege
information of the function routine is also deleted.

Example:

Deletes USER001 from schema STOCKS.

DROP FUMCTION STOCKES LUSEROMM
: T :
Routine name

mDeleting triggers
To delete a trigger, use the DROP TRIGGER statement.
Example:

Delete the trigger belonging to the STOCKMN_DB.

DEOP TRIGGEER STOCKES.OFDER _TEIGGER

7

Trgger name

mDeleting views
To delete a view, use the DROP VIEW statement.
Example:

Delete the view belonging to STOCKMN_DB.

CROP WIEW STOCES.5TOCE _VIEW CASCADE

T

Tahble name of wiewr

The view specified in the DROP VIEW statement is deleted.
mDeleting tables

To delete a table, use the DROP TABLE statement. When a table is deleted, the privilege information for the table is
also deleted.

136

Example:

Delete the tables belonging to STOCKMN_DB.

| DROP TABLE STOCES.STOCK RESTRICT

T

Table name
DRECT TAEBLE STOCES.ORDER RESTRICT

Table name

The tables specified in the DROP TABLE statements are deleted.
mDeleting sequences

To delete a sequence, use the DROP SEQUENCE statement. When a sequence is deleted, privilege information of
the sequence is also deleted.

Example:

Deletes a sequence belonging to the stock management database.

DROP SEQUENCE STOCKS, SEQUENCE?
: 1 :
Sequence name

mDeleting schemas

To delete a schema, use the DROP SCHEMA statement. When a schema is deleted, the privilege information for the
schema is also deleted.

Example:

Delete the schema belonging to STOCKMN_DB.

DREGP SCHEMA STOCES RESTRICT

T

Schema name

The schema specified in the DROP SCHEMA statement is deleted.
mDeleting database spaces

To delete a database space, use the DROP DBSPACE statement. When a database space is deleted, the privilege
information for the database space is also deleted.

Example:

Delete the database spaces belonging to STOCKMN_DB.

| DROP DBSPACE DBSPACE L

| Dratabase space name

DRCP DBSFACE DBSFACE_2

Dratabase space name

137

mDeleting a database
To delete the database name, use the DROP DATABASE statement.

Example:
Delete STOCKMN_DB.

DRC?* DATABASE STOCENM DB

T

Fralafise nalme

138

Chapter 4 Storage Structure

From the application program viewpoint, database data is represented in table format. The application program
manipulates data as if it were manipulating rows and columns of a table by using structured query language (SQL)
statements.

The structure for storing data represented in table format on physical pages is called the storage structure. The
storage structure cannot be directly seen from the application program. Regardless of the storage structure used, from
the application program viewpoint, the table rows and columns appear as if they are being manipulated according to
SQL statements.

However, since the physical data is stored according to the storage structure, the storage structure is an important
factor in determining processing efficiency.

Ignoring the interrelationships between transactions, such as exclusion, and focusing on storage structure, one can
see the following elements affecting the data processing efficiency of an application program:

- Addition of an index
Add an index for a table.
- Allocation of database space
Carefully consider the amount of data to be processed and area usage patterns. Allocate database space for
each component of the storage structure.
- Association with the shared buffer pool
Select a page size and shared buffer pool appropriate to the data processing.

This chapter explains the features of storage structures. The explanation covers the following topics:
4.1 Features of Table Storage Structures
4.2 Features of the Index Storage Structure
4.3 Allocating Space
4.4 Estimating the Required Amount of Database Space

4.1 Features of Table Storage Structures

Specify the storage structure according to a data structure organization (DSO) definition. The three types of storage
structures are SEQUENTIAL, RANDOM, OBJECT, and BTREE. The SEQUENTIAL, RANDOM, and OBJECT
structures are used as storage structures for tables. The BTREE structure is used as the storage structure for indexes.

This section explains the features of the table storage structures and the data processing appropriate to those
structures.

4.1.1 SEQUENTIAL structure

Data is stored in a SEQUENTIAL structure in the order that the data is inserted.

Figure: Overview of SEQUENTIAL structure shows an overview of the SEQUENTIAL structure, using the STOCK
table as an example.

139

[Figure: Overview of SEQUENTIAL structure]

STOCK lable
TMNO| PRODUCT | STOCKQTY | WHGODE
10 | TELEVISION 88 w2
M | TELEVISION 90 we
123 REFRIGERATOR 60 w1
124 | REFRIGERATOR 75 w1
130 | CASSETTE DECK 120 W2
515 | TELEVISION o W2
236 | REFRIGERATOR 8 Wi
557 | REFRIGERATOR 16 W4
54) | CASSETTE DECK 25 we
543 | CASSETTE DECK 14 w3
351 |CASSETTETAPE| 2500 W
352 CASSETTE TAPE 1200 W3
LPﬂmary key
v
B
Page 1 Page 2 Page 3
: TELEVI- REFRIG- REFRIG-
g "0 Tsion | ~ 124 |ERATOR| ~ 226 |emaTOR| ~
! TELEVI- CASSETTE REFRIG- i
:] soN | ~ M0 1" BECK |~ 227 |ERATOR| ™ :
: 123 |REFRIG- TELEVI- CASSETTH
: ERATOR| ™ 212 | "sion | ~ i
! Page 4 Page 5
o4z [CASSETTE ;
DECK |~ Empty
CASSETTE

#1177 TapE |~

CASSETTE
32 |7 TAPE

mSEQUENTIAL structure features for data processing patterns

The factor having the greatest effect on data processing efficiency is the I-O frequency. The SEQUENTIAL structure
has the following features:

- All data is referenced for data processing unless an index exists. Thus, the I-O frequency depends greatly on
the data volume. When data manipulations specify a column, the user must add an index corresponding to that
column.

For information about items to carefully consider when adding an index, see 4.2.1 "BTREE structure."

mSEQUENTIAL structure page size specification
In a SEQUENTIAL structure, the page size is specified by the PAGESIZE option of the DSO definition.

140

When specifying the page size, carefully consider the following point:

- If the table does not contain a BLOB-type column, a row of data in the table must fit within in one page.

- If a table including a BLOB-type column is defined or a BLOB-type column is added during the change of a
table definition, a row of data in the table may exceed one page. However, the total size of the data of the
columns other than the BLOB-type column must not exceed one page.

mWhen an index must be added to a SEQUENTIAL structure

The user must add an index for a column of the corresponding table that has a unique constraint. If no index is added
for such a column, the table cannot be accessed.

4.1.2 RANDOM structure

In a RANDOM structure, collections of storage pages (called buckets) are calculated from the values of the group of
columns defined as a key for the data. The data is stored in pages within those buckets. If the data cannot fit in a
bucket, the SymfoWARE/RDB system automatically creates an overflow part bucket and stores the data in that bucket.
The collection of pages that belong to the original bucket are called the prime part for the overflow part.

A group of columns that determines the page for storing data is called a cluster key. A cluster key is determined by the
CLUSTER option of the table DSO definition. If the CLUSTER option is omitted, the cluster key becomes the primary
key of the corresponding table definition. In a RANDOM structure, data having an equal cluster key is stored in the
same packet.

The hash function is used in calculations to determine a bucket from the cluster key value. From the hash function,
SymfoWARE/RDB automatically determines a bucket for storing data. If RULE is specified in the storage option of the
table DSO definition statement, the data storing bucket is determined from the result of calculating the formula
specified at RULE.

Figure: Overview of RANDOM structure shows an overview of the RANDOM structure, using the STOCK table as an
example.

141

[Figure: Overview of RANDOM structure]

STOCKtable . . ey
PRODCCDE | ITMNQ PRODUCT STQCRLTY [WHLODE
TLY am TELEVISION a5 W
TLY gz TELEWISION a0 w2
RAFG o REFRIGERATOR =] W
AFG 002 BEFRIGEEATOH b ¥yl
cho oM LCASEETTE DECK 120 W2
TLY 003 TELEVISION 1] W2
RFG a03 BEFRIGERATOR g W1
RFG 004 REFRIGERATOR 15 Wd
oo 02 CASSETTE DECK 25 w2
chC an2 CASSETTE BECK 14 W3
cTP am CASSETTE TAPE 2504 W
CTP 002 CASSETTE TAFE 1200 W3
A A Primary key
PRODCODE
Hash function

v Prme part - LTTmTTTTTTrrennnssmmmsmsmomoenenenen
i —Bucket 1 — Bucketa— Bucket 3
: coc | o0l |~ TLY | 001 |~ RFG | 001 | m
CDG | 002 | ~ TLV | 002 | o RFG | 002 |
Coc | 002 | ~ TLV | 003 | ~ AFG | 002 | ~ :
Owerflow painter Overflow pointer
ro== OVBITIOW DA~ - - perr oo oo e e
| —Buoketl— — Bucke! 3
§ CTR | 001 | ~ RFG | 604 | -~
i cre | ooz | 5

mRANDOM structure features for data processing patterns
The factor having the greatest effect on data processing efficiency is the I-O frequency. The RANDOM structure has
the following features:

- If all values of the cluster key are specified in conditional expressions and a unique constraint is set as the
cluster key in data processing, the I/O frequency hardly depends on the data volume.
- In other cases, since all data is referenced, the I-O frequency depends greatly on the data volume. In these

142

cases, the entire cluster key is not specified in the data processing.
mRANDOM structure page size specification

In a RANDOM structure, a prime part bucket is associated with a single page. An overflow part bucket is also
independently associated with a single page. The size of each of these pages can be independently specified. The
prime part page size is specified by the PAGESIZE1 option of the DSO definition. The overflow part page size is
specified by the PAGESIZE2 option.

When specifying the page size, carefully consider the following points:

- Data corresponding to a single row of the table must fit in one page.
- When setting the prime part page size, carefully consider the average I-O frequency (which depends on the
number of data entries within the page).

mWhen an index must be added to a RANDOM structure

The user must add an index for a column of the corresponding table that has a unique constraint but is not specified
as the cluster key. If no index is added for such a column, the table cannot be accessed.

mRANDOM structure data storage position specification

A rule of determining a data storage packet can be specified by setting RULE to the storage option of the table DSO
definition statement. When specifying RULE, note the following:

- ARULE formula resulting in a negative value cannot be specified.
- A RULE formula should be designed by considering the cluster key value to be stored in the table and the
database 1/0 count and storage efficiency from the point of view of work.

A data-storing packet is determined from the remainder of dividing the RULE formula calculation result by the number
of packets. Figure: Overview of data storage method shows an outline of the data storage method.

[Figure: Overview of data storage method]

Stored inthe packet corresponding to the remainder after
the RLILE formula calculation result is divided by the
number of packets

'__\
Prifne pant - -x<l-coococoooboooio \-x\\
Packetn —Facket 1 PacketEL r Packet 3—— :

Farmula 5 Data of 0 Data of 1 Data of 2 Diata of 2
calculation « « o Diata of 4 Datanf Data of B Data of 7
result ! Dataof9 Data of 35
Cverflow part -----------mmmmmsoooo s
-Packet 1 —— r Packet 3— '
Data of 13 Data of 67

Maote: An error accurs ifthe formula calculation result hecomes negative.

The example below shows the table DSO definition when RULE is specified.
Example:

When cluster keys are generated in ascending order, this definition enhances the storage efficiency

143

and prevents data storage in the overflow part. The record size of the PROD_INF table is set to 200
bytes. By considering the page size (PAGESIZE1) of the prime part, design the RULE formula to store
four data items on each page.

\ CREATE DSD PROD_INF_DSO FROM COMP_A.PROD_INF
 TYPE RAWDDM (PAGESIZE1(1>, PAGESIZEZ(12.CLUSTER (ITMNO], :
! RULE (ITMNOf4)) :

144

PROD_INF table

HAuster ke

— il key

[ThANC PRODUGT PRICE RLLE formula calculation result
ool TELEWISION ER000 —=0
ong WIDEQ RE000 —=0
003 AT EMRA, 12000 —=0
004 TAPE G0 —=1
0ns CAELE 1500 —=1
00e A AP Belnn =1
onT SPEAKER JR000 =1
249 REFRIGERATOF. gr000 -G Z
250 WICROMAYE OWEM 48000 —F 2

T Frirnary key @

=tared in the packet carresponding to the remainder after the
farmula calculation result is divided by the number of packets

PRmE A oo e T e e T
. Packet 0 — Packet 1 K‘*— Packet 52 —— '

© | 001 [TELEWISION| ~ 004 | TAPE ~ 249 | REFRIGERATOR | ~- ;
: - - MICROWAVE | | !
| 002 [vioEo 005 | CABLE N N
| 003 |anTENNs |~ 006 | Avane | ~ : E

X 07| SPEAKER ~ :

Mote: A sufficient number of packets should be prepared by considering the data counts in
the table.
The number of packets can be determined from the prime part allocation size specified to
the subject of allocation in the table DSI definition and the prime part page size.
The formula below is used to calculate the number of packets. (One is subtracted because
SymfoVARERDE uses ane page for page managerment.)

Prime part allocation size
Mumber of packets = - 1

Frime part page size

4.1.3 OBJECT structure

An OBJECT structure stores BLOB-type data such as photograph in the order that the data is inserted.

Figure: Overview of OBJECT structure shows an overview of the OBJECT structure, using the PRODPHOT table as

an example.

145

[Figure: Overview of OBJECT structure]

PRODPHOT table
ITRANO FRODPHOTC
a1 AXHEANKA
a02 LSS 90941
Qo3 HHEKERAX
Q04 KEXEAAAK
05 KUAXAKAXK
onG LSS 5.0.0. 8.8 .4
Q0¥ 1S 89 9.0.9.4 1
aos XEEEANKNR
Q09 LSS 90981
010 KEEKARRK
011 KXAAUXXKX
012 KA XEEMARX
LF‘n’!‘l‘lr;lr].' key
omes DIALA PAM cmmm e
: Page 1 Page 2 Page 3
O | XX AN XA AAAAK o2 | AXXAX
KEXXKAXAX XX L 0
EE A - S ¢
Page 4 Page 5
003 | XXXXX HAXXXXXX

XXXXEARX

AXAXNKNXKX

KXEXRAKX

AKX XKXEX

mOBJECT structure page size specification

In an OBJECT structure, the page size is specified by the PAGESIZE option of the DSO definition. The specified page
size must be 32.

4.2 Features of the Index Storage Structure

The index storage structure is the BTREE structure only. This section explains the features of the index storage

structure and the data processing appropriate to that structure.

4.2.1 BTREE structure

BTREE structure is the storage structure used for indexes. Internally, the BTREE structure consists of a tree structure
index part and a data part. The index part, which consists of groups of correspondence information values for index

146

keys and base table data, manages the pages where data is stored. The portion consisting of pages in which data is
stored is called the data part for the index part.

If ADDRESS is specified as the base expression for the DSO definition, the table record storage address is used as
information corresponding to the base table data. If KEY is specified, the cluster key is used.

If data cannot fit in a given page of the data part, the SymfoWARE/RDB system automatically creates a new page.
The SymfoWARE/RDB system then divides the data between the new page and the original page for storage (called
page splitting). Index part page splitting may be performed together with data part page splitting.

If the index key is not a unique key, multiple base table data correspondence information values may exist for a single
index key value. This multiplicity (number of base table data correspondence information values), which also depends
on the index key values, is not fixed. Therefore, the BTREE structure groups index keys and base table data
correspondence information for management. Ascending order is guaranteed for these key groups. Also, to improve
storage efficiency, the system performs front compression for the index key portion.

Figure: Overview of BTREE structure shows an overview of the BTREE structure, using the STOCK table as an
example. In this example, an index is assumed to be defined for the WHCODE column, and the table storage
structure is assumed to be a SEQUENTIAL structure.

147

[Figure: Overview of BTREE structure]

Index key
STOCK table 1
[TRAND FPRODUCT STOCKQTY | WHCODE
1110 TELEWISION g5 We
111 TELEBISION 50 We
123 REFRIGERATOR] W1
124 REFRIGERATOR 5 W1
1410 CASSETTE DECK 120 We
ele TELEWISION 1] We
22k REFRIGERATOR, g W1
gev REFRIGERATOR, 15 Wi
2410 CASSETTE DECK 25 We
243 CASSETTE DECK 14 W3
351 CASSETTE TAPE 25010 We
3he CASSETTE TAPE 12010 W3
T— Frimary key Jj
\\.
Datahase space
Index part {Index DB ---ooreer e T
W3 LS * Index
| part
depth
-- Same level -oeeen
W2 « | W3 . W4 .

Data part (Index DS[) oo sesssssssmsssmssssss s s omooooe
|
Fage Fane
Wl |[Page1.3 WZ | Page 2.2
W1 |Fage 21 Wz | Page 2.3
W1 [FPage 3.1 W2 | Page 3.3
We | Fage 1.1 Wz | Page 4.2
W2 |Page 1.2 W3 | Page 4.1

Fage

H3 | Page 4.3

W4 | Page 3.2

148

= Datahase space
——— Pagel Fage 2 Page3 ——
110 | TELEWISION ~ 174 | REFRIGERATOR | ~ 226 | REFRIGERATOR, | ~
111 | TELEWISION ~~ 140 zassETTE DECK | ~ 22 7| REFRIGERATOR, | ~
123 | REFRIGERATOR. | ~ 217 [TELEMSION —~ 240 | CASSETTE DECK| ~
FPane 4 Paged ——

247 |CASSETTE DECK | ~o Blank

351 ZASSETTE TAPE | ~— - - - - -
3573 |CASSETTE TAPE | ~

mBTREE structure features for data processing patterns

The factor having the greatest effect on data processing efficiency is the I-O frequency. The BTREE structure has the
following features:

- In the following cases, the I-O frequency depends on the depth of the index part. The range of index key
values is specified, or only the values of the leftmost column of an index key consisting of a group of columns
is specified in the data processing.

- Otherwise, the relevant index is not used.

mBTREE structure page size specification

In a BTREE structure, the page size can be independently specified for the index part and the data part. The data part
page size is specified by the PAGESIZE1 option of the DSO definition. The index part page size is specified by the
PAGESIZE?2 option.

When specifying the page size, carefully consider the following points:

- The group of correspondence information values for index keys and base table data must fit as two records.
These records must be in a single page of the index part and data part.

- If the amount of data that fits in the index part and data part is small, the page utilization rate (data storage
rate) decreases. To increase the page utilization rate, specify a page size having a surplus area.

- To fit a maximum number of data entries in a single page of the data part, carefully consider and set the page
splitting points. Frequent page splitting decreases the processing efficiency.

mConsiderations when adding indexes

The user can add multiple indexes to a single base table. By adding indexes, the user increases the processing
efficiency for searches. However, in the following cases, since processing for upgrading all related indexes is
performed, overall processing efficiency may decrease:

- Application program processing updates values of columns for which indexes have been added or base table
data correspondence information.
- Application program processing primarily performs insertions and deletions.

4.3 Allocating Space

This section gives details on the following topics related to the allocation of database space for DSls:

- Formats for associating storage structures and database spaces
- Considerations when allocating space

4.3.1 Formats for associating storage structures and database spaces

Each type of storage structure consists of several components. When database space is allocated to storage

149

structures, each of these components is associated with a database space. The user can use one of the following
formats to make these associations:

mFormat 1

This format associates multiple components with the same database space, as shown in Figure: Database space
sharing among components. This format reduces the number of database spaces to be used. However, multiple DSls
can be associated with the database space. When the DSIs are used at the same time, accesses to the database

space can be concentrated.

[Figure: Database space sharing among components]

o DEI-1 e
! | SEQUENTIAL
i Datapart | .. | —————]
i T Database space
Allocated
roee BEI-2 e
AANDOM e S —
; Allocated
Prime part T T R
T Allocated
i : s e
S;ﬁ o Alocated
L Empty
|| oBuECT
: Datapart | i T
mFormat 2

This format associates one component with the multi-database space, as shown in Figure: Multi-database space
components. This format enables a massive database to be built. However, the number of database spaces to be

used increases.

150

[Figure: Multi-database space components]

e R

RAMDOM

-.——Database space 1

Atlocated

LA e—
|| Owverflow
part RN

L o .
3 L.

ey

e
——Database space ———
Allocated

mFormat 3

This format combines the two previous formats, as shown in Figure: Mixed database space configuration. In this case,
infrequently used overflow parts are concentrated in a single database space.

[Figure: Mixed database space configuration]

SRR - Bl
i | RANDOM :
i : --r—Datakase space 1
i — Alioeated
: Prrirme part [---.. S
: Overfiow [% 1™, ™
5 pat_ |
o, .| “——Database spacs 2
T 5 11 B EEEE e e, I".I . T Aliccated
i | RANDOM P T
: Prime part | & .-)
: tiow | e 4
: E:ﬂa W .. | [Database space 3

Allocated

4.3.2 Considerations when allocating space

In a storage structure where one DSO is divided into multiple DSls, the user can maintain individual DSls in parallel by
allocating database spaces on different hard disks for individual DSls or DSI groups.

Also, if the number of hard disk units and the capacity permits, consider the following points. Take into account the
transitions required for reaccessing storage structure components:

151

- For a RANDOM structure
Allocate the prime and overflow parts in database spaces on separate hard disks.

- For a BTREE structure
Allocate the index and data parts in database spaces on separate hard disks.

4.4 Estimating the Required Amount of Database Space

This section explains how to estimate the required amount of database space for each type of storage structure.
Criteria are presented later for determining values used in the formulas, such as utilization rates. However, since
these values differ depending on the data, ranges of values are given. The user should make space estimates with
some surplus built in. (That is, multiply the estimates by a safety factor.)

152

mSEQUENTIAL structure

fixed-langth- varizble-length- varabie-length-

T Record length part data-control-part part nidi-tag-part
L E |~
Fixed length part » Sum of tengths of fixed length columns
Variable length data : number-of-variable-langth-columns x 442

control part

Wariable length part © Sum of lengths of variabie length columng

NULL 1ag part 1 Number of columns not having a NOT MULL spacification
in the relevant base table

If na variable length columns exist, set zero far both the variable length data control
part and the variable length part in the calculation.

@ Storage area

[]

page-size
size in page
@ Decision of If @ storage area in page is equal to or greater than @ record length, use @ and &
record to obtain the amount of space.
exceeding If & storage area in page is smaller than @ record length, use & and & to obtain the
one page amount of space.
@ Number of @ Storage area size inpage | —
records in a
page

@ record-length

T Truncate fractional
digits to the next lowest

integer.
@ Amount of total-number-
Space of-records
|:| I:l page-size safety-factor
- niraber-
@ nurnber-of- ¥ ofoms T ‘ X
recondg-in-a-
page
[1] .
| 1 t J * Round up fractional
digits to the next highest
- - integer.

Specify a value of at least 1.3 as the safely factor when making this estimate.
Change the calcuated amourdt of space to make it an integral multiple of the page size.

Note: [f ORDER(D) is specified by the storage option of the DSO definition, any
deleted araa (area of deleted records) is not reused. Therefore, specity the
nurmber of inserted records {Including deleted records) as the total number of
records in the calculation.

& Mumber of
pages required

[1]

@ record-length +

[1]

@ Storageareasize in page— 58

E LJ+

- Raise fractions to
the next integer.

@ Amount of
space

[1]

El Mumber of Total nurmber
pages required of records page-size safety-factor

e | <[<[]
Specify a value of at least 1.3 as the safety factor when making this estimate
Change the calculated amount of space to make it an integral multiple of the page size.
Mote @ If ORDER(D) is specified by the storage option of the DSO definition, any
deleted area (area of deleted records) is not reused. Therefore, specify
the number of inserted records (including deleted records) as the total
nurnber of records in the calculation.

kY

153

mRANDOM structure (when a unique constraint is set for the cluster key)

fixed-length- variable-length- varniable-length-
{DRecord length| part data-control-part part null-tag-part
+ + + + 28
Fixed length part » Sum of iengihs of fixed length columns

{axcluding columns forming the cluster key}
Variable length data © number-of-variabla-length-columns
controd part {excluding columns fomming the cluster key} = 4 +6

Variable length part © Sum of lengths ef variable length columns and colurmns
forming the cluster key plus 12,

NULL tag part » Wumber of columas not having a NOT NULL specitication
in the relevant base table

Evenwhen there are no wariable length columng, calculate the variable length data
control part and the wariahle length part.

{DNumbsr of -
racords in a page-size
page { - 94)
(Urecord-length
. Fruncata fractional
digits 1o the next lowest
L | integer.
Page size: Calculated separately for tha prirma and overfiow pants
Amount of i .) numbar-of- - 7
® space for tgf?ég:gsbe r ®records-in-a-
prime part page
prirma-part-
{ f J page-size
P + 1L ox
prime-part-
utilization-rate
T+
t J » Round up fractional
digits to the next highest
integer.
For information about the prime part utilization rate, see the nésd section antitled,
“Usilization rate critaris."
Note: To decreass the chance of ovarflow, maks the total amount of space alocated
to the prima part adhere to the following condition:
Condilion = The value of {prime-part-space-amount - prime-part-page-size yprime-
part-page-size is a power of 2.
(© Amount of [| total-number- @”“mb: rok oy T
space for obrecords gyerlow-rate | ocoras-in-a-
overllow part page
averfiow-
{ x ! } part-page- salety-
size factar
+ 1
) overflow-part- "X X

utilization-rate

+
L J . Aound up fractional
digits to the next

highest integer.

For information about the ovarfiow part utilization rate, see the next section antitled,
*Utillzation rate criteria." Specify a value of al least 1.3 as the salety factor when
making this estimate muitiple of the page size. Change the calculated amount of
space lo make it an integral multipte of the page size.

154

mRANDOM structure (when a unique constraint is not set for the cluster key)

Bee the record tength formula for a RANDCM structure [when a unique constraint is

(URecord iength zet for the cluster key)

Elnumbar of »
records in a page-size

{1] record-length

digits to the next lowest

irnteger.

t J 1 TFruncate fractional

Page sfze: Calculated only Tor the ovedfiow part

@ Afmount of number-of-different-
spacs fm;t key-values-for-the- prime-part-
prme pa cluster-key page-size
§ + 1) X
Amouni of r)
total-number-
ﬁggsf?u{grpan of-records overflow-rate number-of-ditferent-
key-vatues-for-the-
L X } cluster-key
5 + ¢ +1 3 -
(2 Nurtber-of-
records-in-a-
page

averflow-part-
page-size safety-factor

X X

For information about the overllow rate, sae the next section antitied,

“Utllization rate criteria.” Specify a value of at feast 1.3 as the safety factor when
making this estimate multipie of the page size. Change the calculated amount of
space 1o make it an integral multipte of the size,

155

mOBJECT structure

{1) Logicai

record length sum-of-lengths-of-colurnng
(= Storage _
record length page-size
- 144
(Z) Number of N
pages neces- () togical-record-length
zary for ona

logical recard

(z) storage-record-length

+
L J : Found up fractional digits
— — to the naxt highast integer.

@ :rgtétént of {3) number-of-pages-necessary- total-number-of-
p for-one-logical-record records

page-size safety-factor

X X

Specify a value of at least 1.3 as the sately facior when making this estimate.
Changa ihg calculated amount of spaca to make it an intagral multiple of the

page size,

156

mBTREE structure data part

(1) Entry size

- When the storage structure of the comresponding tabie is a SEQUENTIAL struciure:

sum-ol-lengths-ofcotlumns-

torming-the-index-key

X { 1

+

kgy—rxampres—
sign-rate

-] +

20

+
J + Round up fractional

digits to the next
flighesl integer.

For information about the key comprassion rate, see the nexd section entitled,

“Kay compression rate criteria.”

- When the storage structure of the cormesponding fable is a AAMDOM structure:

sum-of-lengths-of-cotumns-

forming-the-index-key

X {1

+

Key-compres-
sion-rate

- } +-

cluster-
Key-5ize

+ 20

+
J : Roung up fractional
digits to the next
highesl integer.

For intormation about the ka}r coMprassion rate, 5ee tha naxt saction antitled,

"Keay compression rate critena.”

{2) Saction stze ® entry-size
X 10 + 2
(ENumber of data-parn-
sections in page-size
a page
P { - 110}

(@ section-size

J L

Truncate fractional
digits to the nexd lowest
intagar.

157

{HINumber of

- When the@' nurnber of sectlons In a page is greater than or aqual to two.

antries in
d page . .
pag (@ section size @number-of-
secliong-in- data-part-utilization-
a-page rate
X X
(1) entry size
L J : Truncate fractional
digits to the next lowest
— — integer.
For information about the data part ufilization rate, see the next section entitled,
"Ulilization rate critaria."
- When the(E number of sections In a page is less than two:
tala-past-
page-gize
data-part-utilization-
{ - 110) 4 2 rate
X2 X
(1} entry-size
: Truncate fractional
digits to the next Iowest
L — intager.
For information about the data part utifization rate, see the next section entitled,
“Utilization rate criteria,”
{5) Number of number-of- +
data part table-recards
pages

(@number-of-antrie-
in-a-page

+
t J . Round up fractional
digits ta the next highest

integet.

The nurmber of data part pages obtained as the calculation resull is also used in
estimating the size of the index part.

Amount of
data pan
space

-

(8] Number-of-data-
par-pages

data-part-

page-size safety-factor

-

Sﬂeciry a value of at least 1.3 as the safely factor when making this estimate.
Change the catculated amount of space to make it an integral multiple of the page size.

158

mBTREE structure index part

D Entry size - When the storage structure of the comresponding table is a SEQUENTIAL struciure:

+

sum-of-fengths-of-columns- key-compres-

forming-the-index-key sion-rate

{ + 12) X {1 -] + 10
+
L J . Round up fractional

digits to the next
highest integer.

For information atiout the key compression rate, see the next section antitled,

“Key compregsion rate criteria.”

- When the storage structure of the corresponding tabie Is a HANDOM structurs:
sum-of-lengths-of- *
columns-fomning- cluster- key-cormpros-
the-index-key key-size sipn-rate

[+ + 2y X1 -] + 10
+
L J : Round up fractional
digits to the next
highest integer.

For intormation about the key comprassion rate, see he next section entitled,

“Keay compression rate critena.”

(2) Section siza O entry-size
X 10 + 2

(ZINumbsr of index-part-

sections in page-size

a page

pag (- 110)
(2 section-size
s Truncate fractional
digits to the next lowest
- - infeger.

159

{&)Number of - When the(3 number of sections In a page is greater than or aqual 1o two:

gnirieg in
4 page @ section-size Dnumber-of-
seclions-in- index.pan_
a-page utilization-rate
4 X
(1 entry-size
L J T Truncate fractional
digits to the next lowest
— - integer.
For information about the index part utilization rate, see the next saction antitied,
"Utllization rate critaria."
- When the(3 number of sectlons In a page is less than two:
mndex-part-
page-size
index-part-
{ - tg) /2 utilization-rate
X 2 X
(1) entry-size
: Truncate fractional
gigits 1o ths next lowest
L — integer.
For information about the index part utilization rate, see the next section entitied,
"Utilization rate criteria.”
{8) Index levet (Onumber-of-entries- number-of-data-pan-
in-a-page pages
{ vz Obtain the minimum: L {hat
= satisfies this relationship.
Example: number-of-ertries-in-an-BTREE-index-part-page = 20
number-of-data-part-pages = 1,300
L=1 {number-of-entries-in-a-ETREE-index-part-page)’' = 20'= 20
L=2 {number-gi-entries-in-a-BTREE-index-pant-page} = 20 = 400
L=3 {number-of-enirieg-in-a-BTFEE-index-part-page)* = 20 * = 8,000'29 L=3
(EINumber of @ index-level (# number-of-entries-in- | +

a-page

index part
pages 1
b2 number-of-data-part-pages-Po / I:l

Exampler number-of-anties-in-an-BETREE-index-part-page = 20

namber-of-data-pat-pages-P = 1,300
index-ievel = 3
Py = 1300 + 20 = €5
P = B5 + 20 = 4
Py = 4+ 20 =1

number-of-index-part-pages {total} = 70

+
L J © Round wp fractional
digits to the next

highast integer.

Amount of
@ index parl (&) numbar-of-index- indlex-part-
space pari-pages page-size safety-factor

P M

Specify a value of at least 1.3 as the safety factor when making this 2stimate.
Change the calculated amount of space to make it an integral multiple of the page siza.

mUtilization rate criteria

The utilization rates (average utilization rate of each page) of the prime and overflow parts of a RANDOM structure
vary depending on the following factors. These factors are the data key values and the order of data additions and

160

deletions. Similarly, the utilization rates vary depending on these factors for the data and index parts of a BTREE
structure and the overflow rate of a RANDOM structure. (The overflow rate of a RANDOM structure is the rate of
overflow to the overflow part relative to the total number of records.) When estimating the amounts of space needed,
use the following kinds of criteria for the various values in the formulas.

If the number of records in a page is small, the various utilization rates are lower, and the overflow rate is higher.

Prime part utilization rate : 04wy
Orverflow part utilization rate : N2wis
Oserflow rate : 0.2 10 0.6 {when a unigue constraing is set for the

cluster key).
0.9 to 1.0) {when a unique constraint is not set for
the key).

BTREE daia part atilization tate : 0.5
BTREE index part utilization rate : (1.5

mKey compression rate criteria

The key is compressed and stored in the BTREE structure data part and index part. Use the following kinds of criteria
for the key compression rates in the formulas:

BTREE data part key compressionrare 1 0.3

BTREE index part key compression rate : {15

mExample of estimating required space for each storage structure

Example 1:
Estimate of the required amount of space for a SEQUENTIAL structure

Calculate the required amount of space for the ORDER table (total number of records: 30,000) having
this kind of structure:

CREATE TABLE STOCES.ORLDER
CUSTOMEER SMALLINT NOT NOLL,
FROLCMO SMALLINT MOT NULL,
PRICE INTEGEE.,
CRDERDTY SMALLINT

Storage structure:
SEQUENTIAL structure
Page size:
32 kilobytes
Safety factor:
1.3

161

record-size

number-of-records-in-z-page

amount-of-space

calcudation.

il

(CUSTOMER + PRODNO + PRICE + ORDERTY}

+ (namber-of-variable-iength-columns < 4 + 2) +
length-of-variable-length-columns + number-of-nuli-tags + 26
(2+2+4 4204040424267

3

{page-size - W4)record-length

= {32768 - 94)/ 34

t

85084210571,
Bsg "

{fotal-numbcer-of-records/mumber-ol-records-in-a-page + 1} X page-size
x salcty-Tacior

= {30000/ 859 + ()= 32768 % 1.3
= {35+ 1px 32768 x 1.3 "

A0 H

1533542 .4 thyies)
1498 rkilabyres)

= 1504 (kilobyte) "
%] Since no variable length columns exist, zero is set for all terms relaied to vadabte length in the

*3 Fractional digits are truncated.
%3 135 is cbtained from rounding up {30000/859) 10 an integer.
#4 The amount of space is changed to be an integral muttiple of the page size.

Example 2:

162

Estimate of the required amount of space for a RANDOM structure

Calculate the required amount of space for the ORDER table (total number of records: 30,000) having
this kind of structure:

CREATE TABLE STOQCHKS.CRDER(

CIUSTOMER EMALLTINT HOT BULL,
PRODRG SHALLINT BT HULL.
PRICE INTEGER.,

LCEDERQTY SMALLINT,

FRIMARY KEY (CUSTCOMER, FRODLNO)

The storage structure is designed as follows. The cluster key is the PRIMARY KEY (a unique constraint
is set). Thus, the formulas for a RANDOM structure (when a unique constraint is set for the cluster key)
are used.

Storage structure:

RANDOM structure with CUSTOMER and PRODNO as the cluster key

Page size:

4 kilobytes for both the prime part and the overflow part

Prime part utilization rate:

0.5

Overflow part utilization rate:

0.2

Overflow rate:

0.2

Safety factor:

1.3

record-size = {PRICE + ORDER{QTY)} + {number-of-veriable-length-columns % 4 + &)
+ (CUSTOMER + FRODNG + 12) + rumber-of-noll-tags + 26
=d+)+{0x4+6)+2+2+ID+2+26
=56

number-of-records-in-a-page = {page-size - 94)irecord-length "1
= {4096 - 94) / 56
= T1.46428571...
=710

amount-of-space-for-prime-part = {{total-number-of-recordsfnumber-of-records-in-a-page)/
prime-part-wiilization-rate + 1) X prime-part-page-size
={(30003/71) 0.5+ 1)x 4096
=(423/0.5 + 1) x 4096 %
= 3469312 (bytes)
= 3388 (kilobyies)
[number-of-pages = 3388/4 = 847
2" =847 ——>=n=10
reference-number-of-pages = 2'%+1=1025]%
=1025 x 4k

= 41{H) (kilobytes)

amount-of-space-for-overflow-part = ((total-number-of-records x overflow-ratemumber-of-records-in-a-page)
overflow-peri-utilization-rate +)
x pverflow-part-page-size X safery-factor
={{300 x02/T1)/ 0.2+ 1) x 4086 x 1.3
=(85/0.2 + 1) x 4086 x 1.3 ™
= 2268364.8 (bytes)
= 2216 (kilobytes) "
*] Since the page size is equal for both the prime part and overflow part, the number of records in & page is also equal.
*2 Fractional digits are truncated.
*1 423 was rounded up from (30000/7 1)
*4 The rumber of pages becomes a power of Lwo.
*3 85 was rounded up from (30000 X 0.2/71).
*& The smount of space is changed to be ar integral multiple of the page size.

Example 3:
An example of a space size estimate for an OBJECT structure.

Calculate the required space size for the PRODPHOT table (total number of records: 3000), which is
the following structure:

CREATE TABLE STOCKS. PRODEHOT |
ITMMNO SMALLINT PRIMARY HKEY NOT NULL,
PRODPHOTO BLOEB| S40K) NOT NULL)Y

Storage structure:

OBJECT structure
Page size:

32 kilobytes
Safety factor:

1.3

163

logical-record-length

storage-record-length

number-of-pages-
necessary-for-one -logical-
record

amount-of-space

ITMRO + PRODPHOTO
24 312000
512002

page-size - 144
32768 - 144
32624

= logical-record-length/storage-record-length

512002 f 32624
15.7 Note: The fractionat digit is rounded up.
1]

{numhber-of-pages-necessary-for-one-logical-record ® total-
number-of-records + 1) % page-size x safety-factor

(1623000 + 13 x 32768 x 1.3

(48001) % 32768 # i3

199634 1.6 {kilobytes)

1930 {megabyres)

Example 4:

Estimate of the required amount of space for a BTREE structure

Calculate the required amount of space when an index is added for the ORDER table having the
following kind of structure. PRICE and ORDERQTY is used as the secondary key for the index. The
ORDER table has a SEQUENTIAL structure, with a total of 30,000 records. The table structure is as

follows:

CEEATE TABLE STOCKS.CRDER(

CUSTOUMER SMALLTNT NOT NULL,
FRODRC SMALLINWNT WOT WNULL,
PRICE INTEGER.,

CRDERQTY SMALLINT,

PFRIMARY KEY (CUSTOMER, PROLDING])

Storage structure:

BTREE structure with PRICE and ORDERQTY as a secondary key

Page size (data part):
16 kilobytes

Page size (index part):
2 kilobytes

Utilization rate (data part):
0.5

Utilization rate (index part):
0.5

Compression rate (data part):
0.3

Compression rate (index part):
0.5

164

[Data part]

entry-size

seCHON-512e

nember-of-sections-in-a-page

nember-of-eniries-in-a-page

number-of-data-part-pages

amount-of-data-part-space

*| Fractional digits are rounded up.

H o B} J00n i} B} N

L

(FRICE 4+ ORDERQTY) x (1 - key-compression-rate} 4+ 20
B+ (] -03)+ 20
25 "

entry-size X {0+ 2
25x 10 +2
252

{data-pari-page-size - | 10¥section-size
(16384 - 1107252
64

{section-sizefentry-size) x number-of-sections-in-a-page
* data-part-utilization-rate

(252/25) % 64 % (1.5

0x&dx05 ™

320

nmnber-of-table-records/mumber-of-entries-in-a-page
30000 4 320

9375

64 "

(number-ot-data-part-pages + 1} x data-part-page-size X safety-factor
(54 + 1) x 16384 x 1.3

2023424 (bytes)

1976 (kilohyies)

= 1954 {kilobrytes) ™

*2 Fractional digits are truncated.

3 (2521257018 troncarcd,

*4 The amount of space 15 charged 10 be an integral muluple of the page size.

165

166

[Index part]

enlkry-size

sechon-size

number-of-sections-in-a-page

number-of-enuies-m-a-page

mdex level

number-of-index-part-pages

amount-of-indck-part-space

[}

[l

]

] MLl

A

[}

[l . H

A H

{PRICE + ORDERQTY + 12} x (] - keycompression-rate) + 1)
G+2+12yx{-051+ 10
19

entry-size x 11+ 2
19x 13+ 2
142

{index-pani-page-size - | 10)/section-size
{2048 - 1103/ 192
10 0

{section-size/emiry-size) x number-of-sections-in-a-page
x index-part-utilization-rate

(192719 x 10x 05

HIE R

5r) D

L = Value satisfies the [ollowing condition:
{ number—nf—emries—in—a—page)l' 2 number-of-data-part-pages

{50)" = 94
2
Index level
{rumber-of-data-part-pagesinumber-of-gntries-in-a-page)
2|= 1
Y. (94/50)
i=1
(944 50) + (94 7 50/ 50)
24199
3

{number-of-index-part-pages + 1) x index-par-page-size x safery-lactor
3+ h=2048 = 1.3

10649.6 (byles}

I {kilobytes)

= 12 tkilobytes) %

*| Fractional digits are rounded up.

*2 (19T} 15 truncated.

*3 Fractional digits are rounded up.
*4 The amount of space 5 changed to be an istegral multiple of the page size.

mEstimating column length

Coluran data attribute Length (bytes)
Fixed length | CHARACTERCn) n
NUMERIC{p. q) 3 (1)
DECIMAL{p.q) i (1)
SHALL INT 2
INTEGER 4
REAL 4
BOUBLE PRECISION 8
TIMES TAKP 7
DATE 4
TIME 3
INTERVAL YEAR(pD m (2]
[TO HONTH 1 m+1 *2)
INTERYAL MONTH(p? m (2]
INTERYAL DAY (p) m ("2}
[¢ TO HOUR | m+1 (")
TO MIWUTE | mie ("2}
T0 SECOND + 1 m43 (2]
INTERYAL HOUR(pD m (2]
[{ TO MIKUTE | m+1 ("2}
TO SECOND ¢] me (")
INTERYBL MINUTE(p) m (2]
[TO SECDND 1 mtl (2]
INTERYBL SECOWDp) m (2}
\ariahle CHBRACTER WARYINWG(nD 3 *3)
length BLOBCnkD b 3 1024 + 6 {*4)
* jdepends onthe multiple of p as follows:
Yalue of p (Precision) i
1~ & 1
I 4 2
5o f 3
7~ 0 4
10~-11 5
12~14 B
15~ 15 7
17~18 8

"2 mdepends anthe multiple of p as follows:

Yalue of p m
1 ~2 2
3 ~4 3
5 ~0 5

"2 aisthe average number of characters. The maximum number of characters is n.
*4 histhe average data length (number of bytes). The maximum lengthis n klokytes,

167

168

Appendix A Quantitative Restrictions

Table: Quantitative limitations shows quantitative restrictions on SymfoWARE/RDB.

[Table: Quantitative limitations]

[tetn

Cuantitative restriction

Mumber of databases

Mot restricted

Length of Alphamimeric
names characters

Dratahase name

Up to 36 characters (*2)

Achermna natne

Up to 36 characters (*13(*2)

Table name

Up to 36 characters (*13(*2)

Column name

Up to 36 characters (¥2)

Index name Up to 36 characters (*13(*2)
D20 name Up to 36 characters (¥2)
D5l name Up to 36 characters (¥2)

Dratabase space name

Up to 36 characters (*2)

Cursor natne

Up to 36 characters (*2)

Correlation name

Up to 36 characters (*2)

Routine name

Up to 36 characters (*2)

SCOpE name

Up to 36 characters (*2)

Trigger name

Up to 36 characters (*2)

SQL statement identifer

Up to 36 characters

S0L variable name

Up to 36 characters (*2)

Statement lahel

Up to 36 characters (*2)

Parameter name

Up to 36 characters (¥2)

Authonzation identifier

Up to 36 characters

Descriptor name

Up to 36 characters

Connection name

Up to 36 characters

S0L server name

Up to 36 characters

SEeqUEenCcE nare

Up to 36 characters

Role name

Up to 36 characters

169

Item Quantitative resdciction
Schema Number of base tables per schema Unresoricred
clements
Number of columns per table Maxtmum 32,000
Table row | SEQUENTIAL structure Mazximum 2 gigabytes
length (including BLOB -type colutn
SEQUENTIAL structure (hot including Mazximum 32,000 bytes
BLOB-type colum) or FANDO structure
OBIECT structure Mazimum 2 gigabrytes
+ 32,000 bytes
Winber af colunins it unique conseraiat Maximum 64 colunmns
Duata fength in uigque constraint Maximum OO0 byics
Data size of defaul value opion Maximuame 3,000 tytes (*3)
Capacity per iable Petabyte order
Comment definiton 356 bytes
l.cngfh of characier string for search condition in rrigger Maximum 15.000 bytes
definition statement
Lv_.:ngth of charactf:r string in triggered SQL. statement of the | afuximum 15.000 bytes
trigger definition statement
Length of character string in the view definition statement for | aMaximum 30,000 bytes
a query specification
Storage Bast table Wumber of D3 per schemi Unrestracted
SEUCtULE
configuration
elements
MNumber of ISI Unrestricted
Number of D51 per DSO Unesiticied
Data size per fixed CHARACTER Maximum 254 characters
length chagacter
string type for
specifving split
conditicn
Number of columns in key Maximuim 64 columeas
Cluster key lengeh Maximom | 0} bytes
Page length (BLOB of 31 kilobytes or less) 1, 2.4, 8, 16, or 32 Lilobyies
Page length (BLOB of 32 kilobytes or more} 32 Kilobytes

170

Quantitative resiriction

Storage Indexes Nurnther of D3O Ulirestricted
[439 IR TFIgM N .
configuration Number of DSI Unrestmicted
elements Numbee of 1351 per DSO Ungresiricied
MNumber of columns in key Maximum &4 colomns
Length of key Maximum 1000 bytes
Page size 1.2, 4,8 16, 0r 32 kilobyles
Mata types Character Fixed length 32000 characters
and attributes
that can be
kandicd
{COBOL)
Yariable length 3200 charcters
MNumbers Extemnal decimal representation Maximum 18 columns
[nfernal binary 2 byee Masimum ¢ columns
representation
4 bytc Maximum ¢ columns
Internal decimal representation Maxinume 18 coluramns
Floating point 4 byte U to & columns in mankizsa
represenation
B byte T or more columns in mantissa
Drata Number of value expressions specified inooption list Mlaximum: 32,000
mznipulation
sratemeats

Number of tables specified in FROM clause of table expression

Maximum 64

Number of value expressions specified m GROUP BY clause

Maximum 32.000

Number of value expressions specified in (YRDER BY clause

blaximum 32 100

Number of cursors processed simulianeously per cne session Unrestricted
Simultanecus coOnnecrions per ene session Mgximum: 16

Size of one 30L statement static 5QL Unlimited.

character sring Drynarmnic 3QL Mazsirmm 32 kilobytes

*1 Upto eight characters can be specified in a simplified storage structure definition. Howewer,
ifDEFAULT DSl MAME=CODE is specified in the system operating environment file,
up to 36 alphanumeric characters can be specified.
*2 A product used together with SymfoWARE may not be able to handle an identifier with a

length of more than 18 characters. In this event, MAWME 5IZE_CHECK=YES can be specified

in the systemn operating environtnent file to perform a check so that no resource name can be
defined with 19 characters or more. An error is rebuned if a defined resource name has 19
characters or more.
*3 If the default walue option is specified with a character string definition, gquotation marles in
the data count as 2 bytes,

171

172

Appendix B Sequential Relationships among
Definition Changes

Definition changes must follow an order determined by definition dependencies. Table: Basic sequential relationships
among addition-type definition changes (1/2) shows basic sequential relationships among addition-type changes.
Table: Basic sequential relationships among addition-type definition changes (2/2) shows basic sequential
relationships among deletion-type changes.

173

[Table: Basic sequential relationships among addition-type definition changes (1/2)]

Drefinition change
operations Add Audd Add Add table
database | schema |sequence | definition
Prerequisite space definition | definition
operations

Alter table
definition

definition)

(add column

Add view

definition | definition

Add trigger

Aadd

procedure
routine
definition

Define database 1 1 1 1

1

Define database space

Define schema 2 2

Define sequence 3

Drefine table

401)

401)

401

Define view

50D

500

500

Define trigger

Drefine procedure routine

6 (*1)

6 (*1)

Define function routine

Drefine privilege inform ati on

Define table D30

Defire table D3I

Define index D30

Define index D3I

Define scope

Eegglu-“n”nns change | 4 44 Add Addtable | Addtable
iy function [privilege | DSO D3l
routine information] defindtion | definition
Prerequisite definition |definition
operations

Add index
DEo

definition

Addindex
D3l
definition

definition

Add scope |

Apply
scope

Diefine database 1 1 1 1

Define database space 4

Define schema 2 2 2 2

Define sequence 3

Define table 4% 3 3

Define view 50"

Define trigger 7"

Drefine procedure routine 6%

Define function routine 3

Drefine privilege inform ati on

Define table D30 4

Define table DEI

Define index D30

Define index DSI

Drefine scope

*1 When prerequisite resourees are specified in the definition statement

Rematks

The nambersindicate the sequence of operations. Among operations with the same sequence romber, they can be performed in any

Sefuenice.

174

[Table: Basic sequential relationships among addition-type definition changes (2/2)]

Definition chatige

Delete

Dielete

Alter table

Delete scope definition

*1 When the target column is referenced in the definition statement
*2 When prerequisite resources are specified in the definition statement
*3 When a prerequisite privilege isto be deleted

Remarks:

The numbersindicate the sequence of operations. Among operations with the same sequence number, they can be performed

if aty sequence.

; Delete | Delete Delete e Delete Delete Delete
operations database database | schema sequence | table definition | oo trigger pracedure
name space definition | definition | definition |(delete defirdtion, | definition | routine
registrati on columen definiti on
o) definitiom)
Prerequisite operations *1)
Delete databaze space 3
Delete schema definition]
Delete sequence definition 50*2) 5(*2)
Delete table definition 4 4 4
Delete view definition 30 3% 30 3% 3% 3%
Delete trigger definition 1 1 1 1 1 1 1
Delete procedure routine 202 20m | o2em | 20w |20 | 20D 2(%2)
Delete function routine #
definition 40" 40
Delete privilege information
definition
Delete table D30 definition 3 3 3 3
Delete table D3I definition 2 2 2 2 p
Delete index D20 definition 2 2 2 2
Delete index D3I definition 1 1 1 1 1
Delete scope definition 1
Definition change| Defste Delete Delete Delete Delete Delete Delete Release
opetations function | privilege | table DSO | table DSI | index index scope . sCope
routine | iforma | definition | definition | D30 D3l definition
definition | tion definition | definition
defini-
Prevequisite operati ons tion (*3)
Delete database space
Dielete schema definition
Delete sequence definition
Delete table defimtion
Delete view definition 3% 30
Dielete trigger definition 1 1
Dielete procedure routine
deﬁ:ﬁnpon 202 207
Delete function routine
definition
Delete privilege information
definition
Delete table D30 definition
Delete table D31 definition 2
Delete index D0 definition 2
Delete index D3I definition 1 1 1

175

176

Appendix C Operating Environment File

Parameters

This appendix lists parameters that can be specified in operating environment files and the files in which the
parameters can be specified. Table: Operating environment file parameters shows the operating environment file

parameters.

[Table: Operating environment file parameters]

Type BEatecntion paratnster o= o B Mamber — of [Can be cmitted? 8Y |8V | CL
specifications
Comourica- | BUFFER_SIFE Size of a tuffar nzed for commmunication One ez [
tion CLUSTER _SERVICE M | Infomnation necessary for sxecutingan One Yes)
LME application program in hot standby mode
COMMUMICATION B | ize of a tuffar used for local accsszona | One Yes e}
LIFFER sarver
DEFAULT_COMNMECTI | Default server conneestion information One T, when [
O DEFsULT is
specifiad in the
COMMECT
statement
MLH COMMECT 878 | Maximum number of local connections ons ez [
that can he aztablished
MAX COMMECT TCP | Mawimum nomber of connections that can | One e [y
he setatlizhed wia RDE2_TCF toone
FymfcWeRERDE system
RDE_EEEFALLIVE Whether touze the EEFPALIVE function | One ez [
for connaction 1o SymfoWARERDE wa
RDE2_TCE
SERYER_EMY_FILE Mameof 2 servef operating envirofonent Iultiple Yes o
fil= to b nzad specifications
pertnittad
SERVER_SFEC Information for commnundcation with a Iultiple o, for access a [
fetnote zerver specifications | famote database,
permmitied Canneit be speeified
forlocal access.
TRAM 3IFEC Tranzaction in the evant of an SCL srror ons ez [
WAIT TIME Cliodndr e ion walt Hins One Yes e}
Wil area DE3C_MUL (+1) Maximnum number of columns availatle for | One e)
an application program
DESCRIFTOR_SFEC SQL deseriptor infocmation for dynarnic One Yes]
agL
Me¥_SqL Mumber of QL statemnents that can be One Yes o
processed coneurrandy
OFL_BUFFER_SIZE Size of a tuffar for stoging an 3L ons ez [
statemnent sxecnticon procadure
RESULT BUFFER Mutaber of toffers and the size of ach One Yes]
tffer for performing 2 bateh FETCH
SCORT_MENM_SIZE Size of memery used as a sort work area One ez O O[O
WORK_ATTLOC 3PAC | Jize of a fils uzed az a werk table or 2on One ez [R
BEJI7E worl aten
WORE_MEM _SIZE Size of memery used as 2 work table one Yea OO [
WORE_PATH Path to a work table of sort worl area Cne e OO [

177

Exeention patafnstar

Oarvisw

Tt ber of
specifications

Zan he canitted?

3T

2

Character
data

PIOCESSIg

CAL_ERROR

Procezsing performed if an owerflosw
CECNTE i ASSITAN SNt pro SSsi g

ez

CHARLCTER_
TRANSLATE

Whather 1o consert tha character eode ona
client

ez

CHAR_SET

Character eode uzad in an application
program

ez

MNCHAR_CODE

Tapanese character code used in an
application program

ez

RDA_CONY_CODE
(*1)

Chararter eode zat

ez

LS I R B B

Tablz and
index

DEFAULT_DSI_MuME

Tethod of generating the DE0 name and
D3I name of a table or index.
SymfcWeRERDE antematically
genatatss the names if a table or index with
a simplifizd storags stenrs dsfinition is
defined.

ez

DEFAULT DSl TYEE

Saleetion of the storage stmetrs of the
D30 of atable. IymfoWsRERDE
antornatically generates the DA0 if a table
with a sirnphifisd sterage stoacre
definition iz defined.

ez

DEFAULT _NDEX_
SIZE

Initial size, sxpansion size, page length,
and other items of the index data storage
area when an indsx with a simplifisd
stofags stemrs dafinition is dafinsd

ez

DEFAULT_OBJECT_
TABLE SI7E

Initial size, expansion size, page length,
and othar tems of the OBIECT stme s
table data storage ares when a table with a
simplified storage stmeture definition is
define=d

ez

DEFAULT_TAELE.
SI7E

Initial size, expansion size, page length,
and othar tems of the table data stora ge
area when a tatle with a simplified stora ge
strueture defindtion iz defined

ez

DII_EXFAND_POITT

Thether 1 activate D3I sxpansicn

One

ez

O

INCLUISTOM_TaI

Limitations on DLz used by an application
PrOgrarn

e

INDEX_PREFIX

Prefix of the D30 name and DI narne of
anindse. SymfcWARERDE
autenatically generates the prefin if an
index with a simplified stocage stoue ture
definition is defined.

ez

TABLE_FREFIX

Prefix of the D3O name and DA narneof a
table. SymfcWARERDE autommatically
genetates the prefin if a table with 2
zimplified storags stmeture definition is
defined.

ez

TEMPORARY_INDEX_
SI7E

Initial size, expansion size, and other itams
of the index data storags anea when an
index is defined for a termporary tabls

ez

TEMPORARY _TABLE_
AI7ZE

Initial size, expansion size, and other itams
of the tabls data sterags area when a
temporary table iz defined

Yem

178

Type BEasention paramnstar ela T ber of Clan b eqnittad? 8Y |8V | CL
specifications
Eaxclusive DS0O_LOCK LSO leek undt and mode 1o he uzed One es [
coutral
I3 CLATION WAIT Loek waiting mode Cme ez [
RE_LOCE ke of rows az lock unite One ez ') [
Detugging | COREFILE PATH (*2) | Dump cutput destination if an application | One b o
FICETAIN STICT GG ElLE
DIV _TRACE FILE Whether 1o canput indi wdnal trace One Yes [
information when an application program
iz muaning undar muliples processes
EXTERMAL_ Duop output destination if an stres ecenrs | One e)
PROCE3IS_CORE i & procsass not nding undar
SymfcWARERDE
e BEXTFROC Mazirnumn mumber of durmps ourput if an One Ves ')
CORE MU SITOT CCGULS i 3 PIOCSSS MNming not undar
SymfcWARERDE
ROUTIMNE_SHAP Whether to cutput trace data for a stoged One es [}
procadurs retins
SQL_SHAP Whathert touss the S0L_SMAP function One ez [
becess plane | ACCE3S_PLAM Whether tochtain an aceess plan for 2ach | One es o
and applicaticn program
performance
information. | ISMORE IMDEX Whether 1o selact an acesss plan that uses | One Yoz [N L R]
(*3) o s
JTOm_RULE Toin method One es oD
SCORT_HASHARESL Size of the area for hashing and storing Cne Yes oo O
SIZE records by sont processing
SQL_TRALCE Whather to obtain the SQL parformanes One s [}
information of each application programm
33_RATE Belaction rate of the ratrieval range for One ez [SIS
sach pradicats
TID_SCRT Whether to e access model TID sorting Cme ez OO O
to retriewe an index and obtain tatle data
TD_UMION Whether to enable the acces modal for One Ves oD O
TID union mergs
USQL_LOCE Lock mode of the zection where a record to | Cne Yes O |
he updatad ty the UPDATE statafnent
(zearch) of DELETE statement (zearch) i=
Iocated
Process EXTERMAL Specification of the ID of the usar who ons Yoz)
ool _PROCESS USER erzetas 3 Process 1ot moning undsr
SymfoWLRERDE
Meassages COMNIOLE M3G Whather 1o catput messages to the console | Ons Yes)
MEG LAMG (*2) Language of messages to he displayed One b o
M3G PRINT Whather 1o display an arror messags at ons Yoz]

exzention of an 30L staterment

179

program

Type Eaxsention patameter | Owerview M ber of Can be enitted? Y |8V
specifications
Recovery RCV_MCODE Specification of the recovery lewvel for an Cne Yes
application program
Rezarved word | SQL_LEVEL Regervad word lawel for an application One Yes
program
Parallsl query | MAXK PARALLEL Multiplicity when a databaseizsearchad in | Cne Yes O |
parallsl
PARAIIEL SCAN Whether tosearch 2 database in parallel in | Cne ez [
application of confecton Nt
Others ALLTER_CHECE (*4) | Whether to chack if a changs o tatle rows | One ez
hecanss of a tatle dazign change affacts an
application program
ARC FLLL Whather to feturn an srer messags if the One ez ')
arehi ve log iz full
MNLIE SIZE Whether to chack the size of a resoures One ez ')
CHECE narne
SIGHAL INF (%) Whather tou2e signals in an application One ez

87 Indicatss whether the parameater can be specifiad in 2 system operating snvironmeant fils.

IV Indicates whether the paratnster can be specifiad in 2 zerver operating snvireament fils,
CL: Indicates whether the paratneter can be specifiad in a client operating environment file.

*#1 Can be speeified only fee RDW eonnsction.
#2 Can be specified coly when Windows iz used.
*3 They are swsention parainstars related to accsss plans and perfermancs information.

For oz information, rafer 1o the "SQLTOCOL Ukar's Guide"
Can be specified cnly when TINIX iz used.

180

Appendix D Environment Variables

At compilation, and link-editing, and execution of application programs, the user can specify tuning the operating
environment with environment variables.

For the specification formats and meanings of the environment variables, refer to the "RDB User's Guide: Application
Program Development.”

mEnvironment variables specified at compilation and link-editing of application
programs

- LANG (UNIX only)

- RDBDB

- SQLPC

- SQLPCOB

- INCDIR (UNIX only)

- INCLUDE (Windows NT/2000/XP only)

mEnvironment variables specified at execution of application programs

- LD_LIBRARY_PATH_64
- LD_LIBRARY_PATH

- LD_PRELOAD

- SHLIB_PATH

- RDBNAME

- SQLRTENV

In addition, there are environment variables related to the execution parameters of the operating environment file for
application programs. The operating environment file is used to tune the operating environment of application
programs; however, a part of environment can be specified with environment variables. The parameters specified in
those environment variables are also valid in the rdbupt command.

mOperating environment tuning priority

If a specification resulting from an environment variable duplicates a specification resulting from an operating
environment file, the former specification takes precedence.

mCorrespondence between environment variables and execution parameters of
the operating environment file
Table: Environment variables specified upon execution of the application program and execution parameters of the

operating environment file shows the correspondence between environment variables and execution parameters of
the operating environment file.

181

[Table: Environment variables specified upon execution of the application program and execu
tion parameters of the operating environment file]

Environnient variable name | Execution parameter of the operating environment file
RDBCSNAME CLUSTER_SERYICE NAME
RDBCOREPATH COREFILE PATH
RDBCHARSET CHAR _SET

RDBOSI INCLUSHKN_DS1
RDBDSO DSOS LOCK

RDBLOCK ISOLATION_WAIT
RDRISQL. SQI._I.FVEI.

RDBMSG MEG_PRINT

RDBORITR DEFAULT_ORIRCT_TABLIE_SIATL
RDBODETR DEFAULT_TABLE_SIZE
RDBODEBIX DEFAULT _INDEX_SIZE
RDBPSCAN PARALLEL SCAN
RDBRCYL RCY_MODE
EDBRLOCK BE_LOCK

RDBRTRC ROUTINE_SNAP
RDBSMEM SORT_MEM_SIZE
RDBSYDSI NSI_EXPAND _POINT
RDBTRAN TRAN_SPEC

RDBTRC SOL_SNAP

ROBWMEM WORK_MEM_SIZE
EDBWFATH WORK_PATH

182

Appendix E RDB Command Summary

This appendix gives an overview of RDB commands and functions. For more information about the syntax of the RDB
commands, refer to the man command (under UNIX) or the SymfoWARE/RDB online manual (under Windows NT).

mRDB Command Summary

A list of the RDB commands is as follows:

183

[Table: RDB command list]

Command Functional overview

rdbadjrey Recovers a database after an input-output fault occurs in a temporary Log file,

rdbaldic Ferlorms additienal allocation and capacity ecxtension of RDB dictionary.

rdhalidx Alters the index degradation specification.

rdbalmdsl Delines alarm points and auomatic exiension for DSIL

rdbchlcsanity Confirme SymfoWARE/FRDB operation.

rdboninf Dizplays the connection and comunication environrment status,

ydhconbf Registers mapping between D81 ard shared memory pool.

rdberbf Opens shared buffer having specified page size and number of pages.

rdberdic Creates RDB dictzonary.

ydbadiex Creates database from database definition file.

rdbdisbf Releaves mapping between DSI and shared baffer pool,

rdhdmp Saves data for each DSI into database in external file.

rdbdmpdic Writes the data of the RDE dictionary to an external file.

rdbdrhf Closes shared bufler of page siee in specified shared bulfer.

rdbdvint Insplays information about the save medium,

rdbexds: Releases DS from SQL processing or cancels exclusion.

rdbezxecsgl [eteractively tunes database performance.

rdbexspe Connects or disconnects a SymfoWARE/FRDE database space.

rdbtmt imitializes DSI.

rdbgrdic Reorganizes RDB digtionary,

rdbgcds: Reorganizes specified DSI.

rdbharsc Fegigters, changes, deletes, and displays resources in hot-standby mode,

rdbhisuty Displays the hot-standby declaration and pre-open information.

ydhinf [Hsplays operating information such as resource information, update inhibit
information, and access inhibit informarion related te DSI, database space. or RDRB
dictionary.

rdbinh Puts specified resource in access inhibit state.

rdblkief Displays information about the locked resource,

rdblog Creates and initializes temporary log file and archive log file.

rdhpldic Places table definition information into memory or deletes it from memory.

sidbpmt Releases access inhibit stats for speci hed resource.

rdbprdic Cutputs use status of RDB dictionary area to standard output.

184

Commuand Functional overview

rdbyjrt (utputs information abowut database definition or list of defined database names to
standard outpul.

rdbpribf Displays 1ist of shared buffer identifiers, shared boffer pool information, and
information on mapping between shared buffer pool and DSL

rdbprimeg 1 Displays an explanation of the specified message nuimber or the action to be talken at
the occurrence of a 3ymfoWARE/RDD internal error,

rdbprzid Displays a ZID list of in doubt transactions under 24

rdbps Displays execution status of the application program or RDB command.

rdbrey Ferforms database resource recovery hased on save data and dara of database space.

rdbrevdic Performs recovery of RIS dictionary and RDB direcrory.

rdbrls Releases recovery level switch or update mhibit, read-write inhebit, and other usage

restrictions for specified resource.

rdbrir Registers recovery level swiltch or update inhibit. read-write inkibit, ard other
usage resirictions foe specified resource,

rdbzaloader Adds data to D3I from data of an external file.

rdhsar Displays SymfoW ARE/RDB performance informaoon.

rdbscldir Creates, displays, and deletes DB directory file for a user log group.

rdbsctrp Sels recovery point.

rdbsloader Creales tahle D31 and all index D51 if indexes are defined from data in input file.

rdbspint {hutpurs use staras of areas of database space.

rdbstart Activates SymfoWARE/RDB system.

rdbstop Stops SymfoWARR/RDE system,

rifhsul oader Adds, replaces, updates, and deletes D31 data from an external file.

rdbtertn Recowers a lost connection.

rdbudsi Qutputs use status of areas allocated 1o D8I

rdbunl Outputs tzbie or table DSI data 1o file.

rdbups Sets optimization information (o use in SOL in RDB diclionary and culputs to
stagdard oulput,

rdbupt Adds, updates, or deletes tahle data in an input file.

rdbzarcy Fecovers a failed in doubt transaction under 2.

sqlpcoh Precomnpiles COBOL program with embedded SQL.

sqlpa Precompiles C program with embedded SQL.

sqloe 9 Compiles and link-edits 4 SQl-embedded C program.

sqlcobol e Compiles and link-edits a SQL-embedded COBOL program.

*1 Executable anly under UMK
*2 Availahle under Windows NT, supplied as a cammand of a standard shell procedure under UNIX.

mStandard shell procedure

Table: Standard shell procedures lists the standard shell procedures used under UNIX.

185

[Table: Standard shell procedures]

Command Function outline

solce Compiles and join-edits an 30L embedded C program.

siglcobal Compiles and join-edits an 30L embedded COBOL progratm.

sglfiee Compiles and join-edits an 30L embedded C program using the Fujitsu C compiler.

mNotes on using RDB commands

#Handling of uppercase and lowercase letters

In RDB command specifications, lowercase letters are distinguished from uppercase letters. In SQL, an ordinary
identifier (not enclosed in double quotes) is handled by converting lowercase letters to the corresponding uppercase
letters. Therefore, when an identifier defined using lowercase letters in ordinary identifier format is specified in an RDB
command, it must be specified using uppercase letters. In addition, lowercase letters in a delimited identifier (enclosed
in double quotes) ate handled unchanged in SQL. Therefore, when an identifier defined using lowercase letters in
delimited identifier format is specified in an RDB command, it must be specified using lowercase letters.

Example:

Example of specification using uppercase letters (specifying ordinary identifier as DSI name in SQL
statement)

Table 2SI definition

create dgi dgildl dso dsolll allocate ...

ROB command

rdbfrr -mi -1 DBOL.DSTOOL

Example:

Example of specification using lowercase letters (specifying delimited identifier as DSI name in SQL
statement)

Table BYS1 delinition

creaste dsi "dsil0fl” dso dsol0l allocate ..

RDBG command

rdbfme -mi -1 DBEOLl.dsi0Ql

#Handling characters that have special meaning in the shell

In UNIX system SQL, identifiers may contain #, ¥, and @. In the shell, these characters are treated as symbols having
special meanings. # is the beginning of a comment in a shell script. ¥ is treated as an escape character or line
continuation symbol. @ is used in the line deletion function. Therefore, when an identifier defined using these
characters is specified in an RDB command, the following condition applies. The special meanings of the characters
according to shell rules must be canceled. To cancel the special meaning of a character, enclose the character string

186

in quotes ('), or specify an escape character (¥) just before the character.
Example:

Example of enclosing character string in quotes (') (specifying DSI name containing # in SQL
statement)

Table DEI definition

9]
I
1]
il
p
1]
o]
n
-
o]
n
'_l.
H*
o]
]
'_'l
o]
in
o]
o]
in
o
(@]
o]
=
o]
'_I
'_I
o
9]
Jui]
o
1]

EDE cormmand

rdbfmt -mi -i DEOL. 'DEST#O0L1!

Example:

Example of specifying escape character (¥) just before character string (specifying DSI name
containing @ in SQL statement)

Tabls DEI dafinition

0
]
]
2]
pars
D
o
i
-
7
H
L]
o]
'_'l
ja
i)
Lo
o
i)
o]
L]
]
=
ai)
'_I
'_I
Lo
n
o
prs
]

EDE command

rdbfmt -mi -i DEOL. 4@DESo001

Some characters that have special meanings can be changed by shell functions. The results must be considered in
the user environment setup if those changes are being made.

#Handling of reserved words in SQL

When a reserved word is used in an identifier in SQL, it must be specified in a delimited identifier (enclosed in double
quotes). However, even if an identifier in an RDB command is an SQL reserved word, it can be specified without
changing the format.

Example:

Example of specifying without changing format (specifying reserved word as DSI name in SQL
statement)

Tahle BXSI definition

creare dgil "SELECT* dso dsobil allocare ...

EDB command

rdbfmf -mi -i DEOL.SELECT

187

188

Appendix F Handling SymfoWARE/RDB
Messages

Refer to the online manual "SymfoWARE/RDB Message Reference" for the user handling of the following
SymfoWARE/RDB output messages:

- Message issued when an RDB command is executed

- Message issued when an application program is compiled

- Message set in the message variable (SQLMSG) when an application program is compiled

- Message output when SymfoWARE/RDB terminates abnormally on detecting an internal inconsistency

mWhen executing an RDB command

Example 1:

Display a description of the qdg03110u message issued by executing an RDB command.
(SymfoWARE Server Enterprise Edition)

gdg03il0u
Ingufficient area for databaze space "z%. ' ¢*

(Explanation]
The destination database space does not have sufficient area available for the specified
allocanon amount in order to expand the DS space.

[Parameters]

s*. Darabase space name

i*: RDB system name

RDT system name will be displayed only in case of mulii RTYB systems,

{System action]
Suspends the operation.

(User responsg]
Enlarge the database space. and re-execure the command.

mWhen compiling an application program (C language)
Example 2:

Display a description of message 11005 issued by the C precompiler.

189

11005
Illegal values was specified as cption "@1l@" argument in envirgnment
wvariahle SQLPC.

[Explanation]
The argument value for the oplion specified in environment variable SQLPC is not
appropriate. One of the foliowing may be the probiem:

1) Argument value consists of an illegal character string.
2} Argument length exceeds the timit.

[Parameiers]
@1 Applicable option

[User respotse]
Check the arguments of the option listed in the manuval. and correct the option information
specified in environment varisble SQLPC.

mWhen compiling an application program (COBOL)

Example 3:

Display a description of message 11011 issued by the COBOL precompiler.

11011
PRIET canhot be specified as filenams exktension of embedded SQL
COBOL program.

[Explanation]
A Tile name with “.cobol™ or ™ fs1” extension has been specified for the embedded SOQL
COBOL program.

[Parameters]
@1l Specified extension

[User response]
Change the file name extension of the embedded SQL COBOL program ta an exiension
ather than ™ cobol” or “. 180 and re-cxecute the command,

mWhen executing an application program

Example 4:

Display a description of message JYP2031E set in the message variable (SQLMSG) when executing
an application program.

190

JYR2GIIE
The COUNT velue in degeriptor name "@1l1@" iz imwvalid.

[Status Code]
07009

[Explanation]

The COUNT value in deseriptor name “@ t & containg one of the following errors;

— A COUNT value is not specified,

— The speciticd COUNT value is not within (the range from 1 0 the implementation vaiue,

{Farameters)
@ 1@ Descriptor name

{System Action]
Cancels processing of the SQL staternend,

{User response]

Take one of the fellowing actions:

— Specify a COUNT value.

— Check the implementation value specified in the ALLOCATE DESCRIPTOR statement.

— Ifanimplementation value is omitted in the ALLOCATTE DESCRIPTOR starement, check
the valug of the “"DESCRIPTOR_SPEC™ parameter n the application envivonmentfile.

mWhen SymfoWARE/RDB has detected an internal inconsistency

Example 5:

Display a description of message qdg12695u issued when SymfoWARE/RDB terminates abnormally

on detecting an internal inconsistency. (Reference code: 16.1.7.769)

191

192

qdgl 26950+ Fvstem error occurred. Reference code = 16.1.7.769
Internal_code = (idt_p:008b2394 sub_cnde:0 modulLe:gdafcomi00n
Line:1363 (SYSTEW HWAME =TEST 2

16.1.7.769
[UserResponse]
Activate SynfoWARE/RDE, and recover fram the system failure.
[Investigation Repoxi]
Cokre dump
Storage location:
The core dump 95 in the directory specified in the RDECORE parameter
of the RDE:configuration parameter file,
Method of acquisition:
Save the core dump in secondary storage by executing the ntbackup
camnand, for axample,
Zanple opearation.
Execute the nthackup command, and save the core file by fallowing the menu
instructions.
Load madule
Storage location.

The load module is in the shin directory under the installation
diractory,
Mathod of Acquisition:

Save the module in secondary storage by executing the ntbackup
comnand, o example,
Zanple operatian:
Execute the nthackup command, and save the rdb2base.exe file by following
the menu instructions.
Library
Storage location: _ _ S
The library is in the lib directory in the installation directary.
Method of acquisition:
When the dumphin command included in W C+—+is executed with the specification
of rdb2hase.exe as the imports option parameter, save the files that are output to
the secandary storage media.
Sample aperation:
Execute the nthackup command, and save the library files by following the menu
instructions.
Console Log
Storage Location: _
The consale Iog is in the directory where the event logs were saved by the
event viewer,
Mathod of acquisition:
Tosave the log ta the secondary storage media, select"Save As" from the log
menu of the event viewer,
Execution procedure Log
Storage location.
Mot dafined
Method of acquisition:
Save the file containing the processing records and execution procss
Fecards Tn secondary storage,

Appendix G Exclusive Control between
Application Programs and RDB Commands

When an application program and RDB command operate simultaneously on the same database resource, the
SymfoWARE/RDB system performs exclusive control. In this way, each process can be executed without
contradiction.

Each function performs processing by applying exclusive control of the resource specified by the option or input data.
The period for which the resource is exclusively controlled is as follows:
Application program:
From the time the first SQL statement is issued from the application program until the application program
terminates
RDB command:
From the time the command is entered until the response message is generated
Table: Locked resources and locked strength for each SymfoWARE/RDB function shows resources for which
lock is performed by each function and the strength of the lock. Table: Relationships among lock strengths
shows the relationships among locked strengths.

[Table: Locked resources and locked strength for each SymfoWARE/RDB function]

Locked mscumss
. Phy=
Logical Stodage o k
Funiction Corormnd |
ROLE
DE |scH | sEQ| TEL |Rmw |TRG| Dso Dsa DsI DT eoor| pEs 55%
@ ax i3
g
Define |sibddlex |CREATE DE Ex
databess
Delete sbddle: |DROPDE Ex
datahase
Define | oibddlex |CREATE
scherm SCHEMA | ER
DROP SOHEMA
(swithont M| Ex
Delete CA SCADE)
e | e
DROP SOHEMA
(wimcasoare | | B E | =X |Ex| Ex EX EX Ef | Ex | sH | EX
Define |oibddlex |CREATE
sqence SEQUENCE S| SH | EX
Delete mtddles |DROE
SEQUETGE SEQUENCE H SH | BX
Define |ofbddlec |CREATETELE | oo | o | . -
tahle
DROE TWELE
(swithont M| osm| - X
Drlete CA STADE)
i sibddlex
DROE TAELE
wincasoare | | W E | =X |Ex| Ex EX EX Ef | Ex | s | EX
Define |ofbdflec |CREATE VIEW | oo | o | -
e
Delete dbddlex |DROP VIEW ar | sm | . -
e
CREATE
Define FEOCEDURE oL - EX
o | TDAe
CREATE
FITMCTION Mo SH)) B
DRCE
_— FEOCEDURE oL - EX
i sibddlex
o e | sH | - - =
FITHCTION
Define | oibddlex |CREATE EsH
teigger TRIGFEF, SHo| SH |- 1) EX
Delete ribddlex |DROP TRIFZER EsH
: | osm | - EX
o gger (1)
Altertable |sibddlex | ALTER TAELE
Pl H | sm EX EX EX EX EX

193

Locked mesoumss
- —]
Function Corrrmnd |
ROLE
B |som | s | L |rm|me| D | BED | Da DA eoor | DEs 5%
@)) i
&
Swap wibddle | THAF TRELE sH | sH EX EX EX EX EX
tahles
CREATE DSO @ | sm = EX
CREATE DO s | sE EX EX EX EX
1524
Tefine
stomge |sibddlex | CREATE DI s | sm X Ex EX EX | H | Ex
stouctire
CREATE D3I | sH EX EE B sH EX SH
I3
CREATE 50CFE | SH EX =
TEOE DSC
(eithonrt s | sm EX EX
C4 S2ADE)
TROE DSO
e casoaps | | EX EX EX EX E | =| = | =
DECE DSC (DD
(eithont s | sm EX EX EX
CASCADE)
Delete
DRCE DSC (L)
Smﬁe mbddler (ifh CASCATIE) SH SH EX EX EX EX SH
DECE DS
(eithont @ | sm = Ex BX | om | =
CASCADE)
TRCE DS
G caseans | | oH EX EX EX B |=| = |=
DROEDSICD | 9 | sH = EX EX sH o |= | m | =
TECE S00PE i = o
AlerDSI |sibddlex | ALTER DA s | sm EX EX EX H
ey ot |aPPIY SCOPE | s = 51
seoge
Belewse | vadlec |FELEASE 500PE| s EX EX
stoge
Define | vidler |CREATEDES H EX
space
Delete
slbddles |DRCFDES SH EX
space

194

Locked mecumas

. Phy=
Logical Stodage o k
Funiction Corormnd |
ROLE
DB |sH |sEo| L |rm | @me| Do [(’I;Sg DS ([1)% SCOP | DES 55%
8
£
GRANT (37H) sH | oD sH | mop
GRANT(TEL) sH | sm MCD- sH | MoD
GRANT (CES) SH MoD | SH | MoD
Define
2 GRANT
H | sm MoD sH | MoD
phiet |sadler | ®OUTINE)
tiem GRANT(TRGY | =H | sH MOD sH | mop
GRANT
; sH | sH |MoD sH | moD
(SEQUENCE)
GRAITTTRCLE) sH | MoD
FEVCEE(SCH) | SH |MOD sH | MoD
FEWCEE(TEL) | #H | sH MOD sH | MoD
FEVCEE (DES) | 5H MoD | SH | MoD
Delets
2l FEVCKE
s | sE MoD s | mop
P‘“E"’lege_ ribddlex | (R OITTINE)
tiem FEYCEE(TRG | =H | sH MoD sH | moD
FEWCKE
L sH | sE |mMoD sH | moD
(SEQUENCE)
FEVCEE(ROLE) sH | MoD
Define usmr | sibddler | CREATE USER EX
Alteruser |sivddles | ALTER U7SER. MoD
Delets user | sibddles | DRCE TISER EX
Define mie | sivddles | CREATE RCLE EX
Delete mole | sivddlex | DRCP ROLE EX
Specity SET 5YSTEM
maneer |00 o p o FTER SH MOD

195

Locked maoumes
Lagical Storage Egly 7
Function Cororend .
RCLE
DsO Do s .g
LE | 5°H TEL FIN | TRG | D32 DI S0P | DES |
S @) @ O
=3
SET STHTISTICS H IH SH BT oD MID i o H
(TEL)
Specdy SET STATISTICS SH IH SH MMoD SH H
Pl D30I
tinnmor. |0
Tration SET FTRTISTICS H iH SH MID SH
(D50
SET STATISTICS
([DSITD H ZH SH Lo H
FRINT
STATISTICS H iH SH SH H SH SH SH
(TEL)
FRINT
. STATISTICE H iH SH H SH H
Display
Pl D0 I
optiTriza-
il aibddlex
ucm_m.ﬁm'- TRINT
STATISTIZE SH SH SH SH SH
[amkay]
FRINT
STATISTICS H iH SH SH SH
(DELTD)
Define TREATE
IRy FLOBAL
hl mibddles TEMPORARY SH iH EL SH
TRELE
Lefine
ternpoasy | mbidler | CREATE IMDEX SH SH EX SH
table indax
Tnitiali DSl H iH SH H SH H
st oot
DEI(DD) SH SH SH SH SH SH
DEI SH SH SH SH H SH SH SH
Loaddata | nibslcader
DEI(ED) H iH SH SH H H SH H
Unload aibunl
dak DI H IH SH H H
Recrmnize DsI H SH SH
datatase mhgcdd
DEI(CD) H H SH
aibupt SH SH SH SH H SH SH SH SH
Update
dumtae | Tibsaloader SH iH SH SH H SH SH SH
miteloader H iH SH SH H H SH H

196

Locked maonmes

. Phya
Logical Stodage inal
Funecticn Coromend

ROLE
Dac D

LE | 3CH | SEQ TEL |ERTH |TREG| L3O T Dsl ax

SO0P | DES

Trzer authoniration

idemtifier

Exgand D3l SHO| - . - - ; ;] SH

DSl area halredsi
aweroetical o

i

DSI(DD) SH

Exclule wbepdsi | DEI
Dil

SH MOD MO MOD %]

DEo SH MOD - SH

Ugtae

optiriza-
o |sttups |DEO(TD

SH MOT - SH

DsI
DSI(DD

SH LoD

Hl2|R|8|=
HlE|&®|8]|=
Hle|gR|&8]|R

SH)% wn]

Frnt
et infio- ot i i
ToEticn

2

SH

2

FPont space
indforTee dbepoint SH - - - - - - - SH SH - SH
ation

Cnptput D ST Dl SH - . - - - - - sH
=T mkmd=i
statis DEITD SH - - - - - R R R sH

Ceate s

iy pibdrop | DEL specification - - - - - - - - SH

DEl specification - - - - - - - - EX

Ful ot
Restom . .
database LE S specification

badrow

5]
H

hlanage
adthive kg

Chtadn DIC specification. SH - - - - - - - IH sH
ope rafion
infogree- | sdbind DAl specification

=

SH

DES specification. | SH - - - - - - - SH SH R 7

Display

EHEEIHOT

Disglay
Tesoue

lock indfie- o

—
s TR gy gving

197

Loched ®aoumes
Logical Somge E:llﬂ‘ =
Function Coroarend |
RCLE
jae) oa 5 .g
LDE | S7H TEL BTN | TR Dao Dsl SOOF | DES | @
S [}) i
=
DIC specification SH SH
Speciy R .
uks amibats DEI specification sH sH
DB S specification SH sH . sH
DIC specification SH SH
Set wsme B .
s b= D51 specification SH sH
DB S specification SH SH - SH
LT . Ll specification SH SH
inhibiti mibdnh
hitici. LB S specification SH SH . SH
Camcel D51 specification SH SH
access dbprod
inhibition LBS spevification H SH . SH
e
ot Al fglpeoh
Disconnect Todetach - - - - - - - - - - .| MoD
and
connect mdberspe | mtch - - - - - - - - - . . MO
datatese
Space mp - - - - - - - - - - - TH
Disconnect
and
SOMECt | beardic
ELE
ditectory
file

198

Locked meoumas

. Phy=
Legical Storage il
Function Cororeemd .|
ROLE
Dso DI = .g
LB | 3CH TEL ETH | TRG | D32 DI 300F | DES | M
s T ax i3
=
Application pmImETL
(weith danaric S0L SH SH SH SH SH SH SH SH SH SH SH SH SH
Staterrent)
Application paImETL
(without dymarnds 30T SH SH SH SH SH SH SH SH SH SH SH SH SH
StERETEnT)
Sun RDE rdb=tart
SopRLE rdbeiop
Check FDE operation rdtchkmndty
Qpen dtertf
E Cloze rdbdrbf
Regicter
g - lence rdbeombd sH H SH
E Camcel haist
i |comespomdence o f M H s
Display rdbprtbi
Do genezrte indes rdtelids SH EX
Load defindtion bldi
inforTreion on TeeTnCTy o H SH H
create BDE dictionars rdterdic
Enpand sive of RTE baldic
dietiomary o g
Relocate EDE dictiomary |rdbgodic
Display FDE di-tionacy .
e St ridbpadis
Eestome EDE dictionary | odbacdic
Crezte EDE dictionary b ;
= data = i
Tefonitor pedfodroanc: rdtear
Spect v Eornery point | rdbestm
Collect and mstome rdbtemn
conrection and display
stams rdbenind
Execute 301 statercent | rdberecsgl SH SH SH SH SH SH SH SH SH SH SH
R.aconery under HA by
Dricplay Kstof MIDs .
underEa rduprdd
Dicplay EDE resage
o i

199

Loched ®aoumes
Logical Storage Phys g
Function Comnrrend |
ROLE
LE | 8CH | 5EQ TEL BEIN | TRF | D30]E')Ds{c)) Dsl (]:I)}Sél) S0P | DES g g
=3

i L
Crutpt hot stand by
declaration and preopen. | ndbhaty SH - - - - - - - sH - sH
inforreation
SR e

LE: Database

3CH: Scherm

SEQ: Sequence

TEL: Ba= tabke

RTIT: Routine

TR Trigger

D0 Table DSO

D0 (IE): Inde: D3O

Dal: Table D3I

DEI(ED: Indem DIL

S00E: Scope

LE:: Doarabace spacs

DIC: EDE dirtionary

SH: Shared reode

h % i IModerae share riode

EL Monshamd roode

ot locked

1 A whle pecified in the O clause izlocked m B3 A tahle specified ;o3 tiggemd SCOL smerentis locked in SH.
3 Can e wsed only for T

[Table: Relationships among lock strengths]

Preceding | Suceeeding
EX MOD SH
EX N
hMOD N N P
5H N P P
P Muitiprocassing of the same resource parmitied Delween two processas

M Multiprocessing of the same rescurce not permitted belween two processes

200

Glossary

Access

The operations of reading data from a storage device and writing data to a storage device. In this manual, reading
data from a database and writing data to a database is called access.

Application program

Generally, programs used by users for their work are defined as application programs. In this manual, programs that
read data from, or write data to, databases in response to business processing performed by users are known as
application programs.

Base table

A table defined as a base table in logical structure definition. The data body is stored in a database space.

BTREE structure

The storage structure for an index. Consists of an index part and a data part. The index part folds the values of
information about the correspondence between groups of columns that are index keys and base table data, and
manages the pages of the data part. The data part holds data consisting of values of information about the
correspondence between groups of columns that are index keys and base table data.

Related terms:
Index part, storage structure, data part

Bucket

A structure unique to RANDOM structures. A RANDOM structure uses a hash function as follows. The function
specifies the collection of pages that sore data from the values in the group of columns that form the data key. The
collection of pages is called a bucket.

Related term:
RANDOM structure

B-tree structure

An index system using an effective retrieval technique for speedily finding table data satisfying the retrieval condition.

SymfoWARE/RDB uses this effective data retrieval technique to record data storage location in the root-trunk-leaf
format and retrieve data satisfying the retrieval condition in high speed. An index using this technique is calld "B-tree
structure." SymfoWARE/RDB adopts the B-tree structure for the index that is a table storage structure.

Related term:
Hash structure

201

Client

he operational unit that requests data processing in the client/server model. When a database is used according to the
client/server model, the application program requesting access to the server database operates in the client.

Client/server model

A model used in data processing in which the operational unit (client) that requests data processing and the
operational unit (server) that executes data processing are established separately.

Cluster key

A grouping of columns that become a key for determining the page that stores data. Data for which cluster key values
are equal is stored in the same bucket or overflow part bucket. Cluster keys are specified in the CLUSTER option of a
table DSO definition. If cluster keys are omitted, the primary key of the corresponding table becomes the cluster key.

Column

A constituent element of a table. A relational database represents data using two-dimensional tables consisting of rows
and columns.

Column attribute

Column data types and column constraints

Column constraint

Column constraints include the NOT NULL constraint (NOT NULL) and unique constraints (UNIQUE, PRIMARY KEY).

Related terms:
Unique constraint, NOT NULL constraint

Column name (item name)

The name attached to a column as defined in the schema. The column name is used to specify a column that is the
subject of an operation in an SQL statement that manipulates data.

Commit

Makes the data manipulation of a transaction being processed take effect. The data manipulation in the transaction is
physically reflected in the database. An application program deliberately controls a commit by issuing a COMMIT
statement.

Related term:
Rollback

202

Connection

Connection refers to the relationship that connects a client to a server. A connection is made by specifying a
CONNECT statement in an application program. Conversely, a DISCONNECT statement cuts off the connection.

Cursor

A cursor is an indicator that indicates a row to be manipulated. A cursor is defined by a cursor declaration statement.
The OPEN and CLOSE statements start and stop cursor operations, respectively. The FETCH statement moves the
cursor.

Cursor SQL statement

A cursor SQL statement is a data manipulation SQL statements that uses a cursor to specify rows to be manipulated.

Data manipulation SQL

A data manipulation SQL is an SQL statement used to reference, add, delete, or update a database.

Data part

A constituent element of a storage structure. The data part contains storage data corresponding to the table data
(SEQUENTIAL structure or OBJECT structure) or data made up of index keys and table cluster keys (BTREE
structure).
Related term:

Index part

Data structure instance (DSI)

Expresses the storage structure for a table (base table). In addition to the information expressed in a DSO, a DSI
expresses a mapping to a database space. The relationship between a DSO and a DSI can be one-to-one or
one-to-many. A one-to-many relationship occurs only when a split table operation is applied.

Related terms:
Storage structure, DSO

Database generation

Storing the initial data in empty base tables immediately after database definition. SymfoWARE/RDB utilities are used.

Database name

Many database can be created as units of administration and design on one server system. To identify each database
uniquely, each is assigned a unique name (database name) on the server system.

203

Database space

An area that stores base tables and indexes. Database space is created by physical structure definition in
SymfoWARE/RDB.

Deadlock

A stopped status that occurs when several transactions share use of a database. A deadlock is to a loop that occurs
when several transactions wait for the same resource. Each transaction waits for another transaction to release the
resource, and all transactions in the loop end up in stopped status.

Related terms:
Transaction, exclusive control

DEFAULT clause

An element of the definition of a column in a table. If the following condition applies, the value defined in the DEFAULT
clause is inserted. The data to be inserted in a column is not specified when a row is inserted in a table using the
INSERT statement. If a DEFAULT clause is not defined for a column, a NULL value is inserted.

DELETE statement

The DELETE statement is data manipulation SQL statement used to delete rows from tables.

DSO

Expresses the storage structure for a table (base table). DSOs include table DSOs and index DSOs.

Related terms:
Storage structure, DSI

Dynamic SQL

Dynamic SQL is a function for generating and executing SQL statements when executing an application program. In
general, this function is used by general-purpose package programs.

Embedded exception declaration

An embedded exception declaration specifies the processing to be performed if an exception condition is issued when
and SQL statement is executed in an application program. The WHENEVER statement is used to specify an
embedded exception declaration.

Embedded SQL
SQL statements can be used as embedded SQL statements. Use embedded SQL statements to manipulate data in

application programs written in high-level languages such as C language or COBOL. For example, when COBOL is
used, specify an SQL statement embedded between EXEC SQL and END-EXEC.

204

Esql

A generic name of the compiler function for embedded SQL C programs or embedded SQL COBOL programs.
Embedded SQL C programs and embedded SQL COBOL programs are called as shown below:

Embedded SQL C program:
Esql-c

Embedded SQL COBOL program:
Esql-COBOL

Excel

Developed by Microsoft Corporation, Excel is spreadsheet software that runs on a workstation.

Exception condition

When an SQL statement is executed in an application program, data to be processed may not be able to be found or
an error may occur. Such a condition is known as an exception condition or exception. if an exception condition occurs
while an application program is running, the status code corresponding to be exception condition is set in SQLSTATE.

Exclusive control

Control used when multiple users use a database. While one user is updating the database, other users cannot
reference the data being updated or cause data conflicts by updating the data being updated. This function is
generally called locking.

External routine

A user-created program (written in a language such as C) registered to a server as a dynamic link library called from
an SQL statement. External routines have an advantage because they use C and other languages to enable complex
processing such as formatting of character string data to be easily accomplished. Such processing with SQL functions
has limitations.

With SymfoWARE/RDB, C can be used for creating external routines.

Function routine

A function that defines a user-created C program as a function in an SQL statement and processes it.

Users can create functions that they want and that are not provided by SymfoWARE/RDB, and they can use them in
SQL statements in the same way as for numeric, data string, and date-and-time functions.

Hash function

The function used to specify the collection of pages that store data from the value of the group of columns that form
the data key. Unique to RANDOM structures.

Related term:
RANDOM structure

205

Hash structure

An indexing method used to find quickly the data of a base table that matches a search condition. A hash structure is a
storage structure that makes fast data manipulation possible as follows. A hash structure uses a has function to
determine the storage location of data using the value of a data key. SymfoWARE/RDB uses this mechanism in
RANDOM structures that are the storage structures for base tables.

Related terms:
B-tree structure, RANDOM structure

Host variable

A variable for passing data between an application program and a database in SQL statements that manipulate data.

Index

Key data for increasing the efficiency of retrieving table data. If efficient data retrieval is not possible in
SymfoWARE/RDB using only the primary key specified in the table definition, a supplemental positional key data can
be created. This key data is called an index. An index can be created for each column of a table or for several
combined columns. An index is established in a storage structure definition.

Index definition

A definition that indicates the columns of a table for which the index is created. To increase data manipulation
efficiency, an index is required for frequently searched columns.

Index part
A constituent element of a storage structure. The index part is the portion that stores the data of an index for retrieving
data stored in the data part. The index part is a constituent element of a BTREE structure.

Related terms:
Data part

Indicator variable

In high-level languages such as C language and COBOL, the indicator variable is a variable specified to be paired
with an SQL data variable. Indicator variables are used when SQL statements are used to fetch data from, and update
a data base. When SQL statements are used to update a data base, the indicator variable indicates whether or not
data stored in the SQL data variable contains a null value. When SQL statements are used to reference a data base,
the indicator variable indicates whether or not the execution result of the SQL statement has a null value stored in the
SQL data variable. The indicator variable also shows the number of characters in character-string data stored in the
SQL data variable.

INSERT statement

The INSERT statement is an SQL data manipulation statement used to add rows to a table.

206

Log group

A log environment split unit is called a log group. Each log file consists of a log management file, temporary log file,
and archive log file. There are two types of log groups: system log groups unique in the default RDB system and
multiple user log groups to be added and defined.

Logical structure

One of the structures of a database along with the storage structure and physical structure. The data structure that
includes the schema, table, and column configuration, and column data types is called the logical structure.
Constraints such as unique constraints, privileges, procedure routines, and triggers are also elements of the logical
structure.

Related terms:
storage structure, physical structure

Logical structure definition

An element of SymfoWARE/RDB database definition (also called schema definition). Table and view table definitions
apply to logical structure definition.

Lotus 1-2-3

Developed by Lotus Development Corporation, Lotus 1-2-3 is spreadsheet software.

M host

The information processing system built into the M series general-purpose computer is called "M host"

Multi-database space

A base table or index DSI (data structure instance) allocated to multiple database spaces. A multi-database space can
correspond to a large capacity DSI that exceeds the absolute capacity of a disk volume.

Multi-RDB

Multi-RDB means to activate multiple SymfoWARE/RDB systems with different RDB dictionaries in a single system
configuration. This configuration allows linkage to each SymfoWARE/RDB environment for data access.

NTFS (Windows NT(R) file system)

A file system for use in the Windows NT(R) operating system. This file system supports a file recovery function, mass
storage media, long file names, and strict access privilege control.

207

Non-cursor SQL statement

An SQL statement used for data manipulation, the non-cursor SQL statement does not use a cursor to specify rows to
be manipulated. Instead, the rows to be processed are specified in the search condition specified in the SQL
statement.

NOT NULL constraint

A constraint on a column of a table. This constraint prohibits rows in the table for which the value in the column is
NULL.

NULL

The value of the data in a specified column of a row in a table that is undefined.

Number of key values that differ

Optimization information that refers to the number of key values of storage data in a database that differ from one
another. For example, if all the storage data key values in a database are different, the number of different key values
matches the storage data count. Conversely, if all the storage data key values are the same, the number of different
key values is one.

OBJECT structure

A storage structure of SymfoWARE/RDB database base tables. This structure is applied to base tables for handling
image, voice, and other types of multimedia data.

Related terms:
SEQUENTIAL structure, RANDOM structure

Open Systems Interconnection/Remote Database Access (OSI/RDA)

OSl is an international standard for interconnecting different types of computers. This standard is being developed by
the International Organization for Standardization (ISO) and the International Telegraph and Telephone Consultative
Committee (CCITT). RDA is an OSI application layer standard for interoperation of databases between different types
of systems. RDA makes it possible to perform processes such as retrieval and update using the SQL database
language in databases on different types of systems.

Operating environment file

A file for defining the operating environment used when an application program is executed. Operating environment
files include client operating environment files and server operating environment files. A server operating environment
file is used for tuning the system-provided files for the application program.

Optimization

Determining the most efficient processing procedures for the search conditions by investigating tables bound to SQL
statement instructions.

208

Optimization information

Information that is the basis for optimization in SymfoWARE/RDB. Optimization information includes the amount of
base table data (number of rows), the number of levels of indexes, and the number of different key values.
SymfoWARE/RDB integrates and evaluates SQL statements and optimization information and determines the most
efficient data manipulation processing procedures. Optimization information is collected using the rdbups command.

Overflow part

A constituent element of a storage structure unique to a RANDOM structure. When storage data can not be collected
in prime part pages because of excess data, the overflow part provides reserved pages for storing the excess data.
The overflows part consists of these reserved pages.

Related terms:
Prime part

Overflow pointer

When storage data is not collected in the prime part, the storage data is collected in the pages of the overflow part.
(This condition does not apply to a page split.) When this condition occurs, an overflow pointer connects the relevant
page of the prime part to the relevant page of the overflow part. The overflow pointer is unique to RANDOM structures.

Related terms:
Overflow part, prime part

Page

The smallest unit of I-O for a database. The size of a page is determined by the number of rows to store in the page.

Page split

A self-adjustment function unique to B-tree structures. When the amount of data stored in a given page exceeds a
fixed value, this function relocates storage data between separate pages (including empty pages). This relocation
evens the amount of data stored in pages to maintain a balance in processing efficiency.

Related terms:
B-tree structure

Parallel query

To raise the information processing efficiency in handling a large volume of data, a database is divided into several
DSI units. The parallel processing of DSI units is called parallel query processing.

Physical structure

One of the database structures along with the logical structure and storage structure. The database space located on
a magnetic disk volume is called the physical structure. A database space is an aggregate of fixed-size blocks.

Related terms:
Storage structure, logical structure

209

Physical structure definition

An element of a SymfoWARE/RDB database definition for creating database spaces.

Pointer variable

A host variable declared as a pointer in an embedded C program. An area dynamically obtained using the malloc
function or obtained outside an embedded SQL declare section can be specified in an SQL statement.

Primary key

A column or group of columns that can uniquely specify a row of a table. One of the major elements for designing
logical structure. The primary key is specified using PRIMARY KEY in the unique constraint of the table definition.

Prime part

A constituent element of a storage structure that is unique to RANDOM structures. Storage data corresponding to
table data is obtained from a page (bucket) of this part first.
Related terms:

Overflow part

Private sort work area

One of the sort work areas of the SymfoWARE/RDB system. A private sort work area is prepared by the user. The
directory is specified in the operating environment file specific to an application program.
Related terms:

Shared sort work area, sort work area

Procedure routine

The definition of a database processing procedure by SQL is called a procedure routine.

Procedure routine definition

Defining a procedure routine with a logical structure is called procedure routine definition.

Related term:
Procedure routine

RANDOM structure

A storage structure of SymfoWARE/RDB database base tables. A storage structure in which hash function indexing is
used in the data storage method is called a RANDOM structure.

Related term:
OBJECT structure, SEQUENTIAL structure

210

Raw device

A disk area that can be accessed regardless of the UNIX file system is called a raw device. The raw device is a
character-type special device created using the UNIX utility. It is ordinarily indicated by a node name created under
/dev/rdsk/.

RDB configuration parameter

Information, such as where the RDB directory file is located, that defines the operating environment of a
SymfoWARE/RDB system. Operating environment setup is performed in accordance with the description of the RDB
configuration parameter during when the RDB system is activated.

Related terms:
RDB configuration parameter file

RDB configuration parameter file

A file containing RDB configuration parameters is called an RDB configuration parameter file. The RDB configuration
parameters are used to define SymforWARE/RDB operating environments such as an RDB directory file allocation
destination.

RDB dictionary

A file in which user database definition information is stored. An RDB dictionary is represented in a table like those the
user defines. This table is called a system table.

Related terms:
System table

RDB library

When an application program that uses SQL statements is executed, shared objects provided by the
SymfoWARE/RDB system are called to perform database processing. The shared objects also call shared objects
provided by Windows NT(R) system. The load module of an application program that uses SQL statements must be
dynamically linked to these shared objects. In this manual, these shared objects are called the RDB library.

Read-only cursor

In an SQL data manipulation statement, a cursor that cannot be used to update and delete is called a read-only cursor.
The cursor declaration specifies whether a cursor is read-only. For example, if two or more tables are specified in the
FROM clause of a query specification, the cursor is a read-only cursor.

Related terms:
Updatable cursor

Reference mode

A mode denoting strength of exclusion. Also called shared mode, the reference mode represents the strength of data
locks in data manipulation. Data that is locked in reference mode can only be referenced by other transactions and
cannot be updated. In general, the execution of other transactions waits until a commit is performed on the transaction

211

that obtained the data lock.
Related terms:

procedure routine, function routine

Relational database

Database used in SymfoWARE/RDB that represents data using two-dimensional tables consisting of rows and
columns. Database operations are performed using the SQL database language.

Remote database

When a database is distributed into multiple servers, the processing mechanism to access the database from one
application program is called "remote database"

Remote database access - service (RDA-SV)

A software product provided by Fujitsu Limited that implements distributed database functions to be used by PC
spreadsheet software and application programs on a server system

Role

A group of privileges required for one transaction. To specify at one time the privileges required for one transaction,
define a role. For efficiency of privilege management, a role can be defined to grant the role privileges to all users who
perform the relevant transaction.

Rollback

Nullifying the data manipulation of a transaction that is being processed. The two kinds of rollback can be performed.
Rollback in data manipulating SQL statement units can be the occurrence of an exception condition in a data
operation. Rollback in transaction units can be the deliberate execution of a ROLLBACK statement by an application
program.

Related terms:
Commit

Routine

Procedure routines and function routines are generally called routines. Related terms:

procedure routine, function routine

Routine name

The name of a procedure routine or function routine is called a routine name.

212

Row

A row is one of the components of a table. In relational data bases, data is expressed in terms of two-dimensional
tables containing rows and columns.

Row identifier

The rows of a database table are uniquely identified. A user can manipulate a row using the row identifier fetched by
the single row SELECT statement or by using the FETCH statement.

Scalable log operation

Splits log environments into multiple log groups in the RDB system for definition.

Schema

A constituent element of a database. SymfoWARE/RDB performs data analysis using information analysis system
AA/BRMODELLING to create tables or view tables.

Schema definition

Logical structure definition that includes defining the base tables and view tables that constitute a database, the
column configuration of each table, and the attributes of each column. In addition, privileges, a procedure routine, and
triggers can be defined. This is called "schema definition"

Scope

When a table is accessed by use of a SQL statement for data manipulation, the access range can be limited. The
access range of is called the scope. The scope function limits the data manipulation range for each user by applying
or canceling the scope for the user who accesses the table.

Security

SymfoWARE/RDB assures security for resources such as schemas, tables, procedure routines, and database spaces.

Sequence

A function that generates a value unique within an entire system. A sequence can be specified in an SQL statement to
use the generated values primarily for creating primary key values in a table.

SEQUENTIAL structure

A storage structure of base tables in a SymfoWARE/RDB database. This storage structure is applied to base tables for
adding rows (records) in the order of data generation, as in a historical journal.

213

Related terms:
RANDOM structure

Server

The operational unit that executes data processing in the client/server model. When a database is used according to
the client/server model, the database operates in the server.

Shared buffer pool

A buffer for accessing a database (also called a shared buffer). Because data can be shared by multiple application
programs, a shared buffer pool can minimize the number of inputs and outputs of data application programs accessing
in common.

Shared buffers

A buffer for accessing a database (also called a shared buffer pool). Because data can be shared by multiple
application programs, a shared buffer can minimize the number of inputs and outputs of data application programs
accessing in common.

Related term:
Shared memory

Shared memory

A memory area that can be mutually referenced by more than one process. In a SymfoWARE/RDB system, shared
buffers and the log collection area are placed in shared memory.

Related terms:
Shared buffers

Shared sort work area

One of the sort work areas in the SymfoWARE/RDB system. The shared sort work area is provided by the user and is
specified in the common application environment file of the directory system.

Related terms:
Private sort work area, sort work area

Sort work area

A work area the SymfoWARE/RDB system uses on magnetic disk. The SymfoWARE/RDB system saves data in a
work table when it needs to save an intermediate result while manipulating data. If sorting is required, the
SymfoWARE/RDB system uses sort work. A work table or sort work of up to a specified fixed amount uses virtual
memory. When a work table or sort work exceeds the fixed amount, it uses an area on magnetic disk. This area is
called a sort work area. A shared sort work area is shared by the entire SymfoWARE/RDB system; own sort work
areas are used privately by each application program or command.

Related terms:
Shared sort work area, private sort work area, working sort area, work table

214

Split condition

When a split table operation is applied, the rule for dividing data into split units is called the split condition. The split
condition specifies a list of column names representing split keys and a list of dummy values in which "?" is specified.
A split condition is specified in table DSO definition.

Related terms:
Split key, split key value

Split key
he key used to locate data by dividing it into split units when applying split table operation. This key corresponds to a
specific column (or multiple columns) of a table.

Related terms:
Split value, split condition

Split value

The value for a "?" specified in a split condition in a table DSO definition that is specified using a constant when the
table DSI is defined. This value applies to split table operation. Data stored in the defined DSI is a row in which
evaluation of the condition is true when the "?" in the split condition is replaced by the split value.

Related term:
Split key, split condition

Split table operation

SymfoWARE/RDB allows splitting a single logical base table into physically separate tables. Splitting tables speeds up
the access to a large database and ensures practicality from an operations standpoint. For example, a sales table for
all stores can be split by store. An application program can apply split table operation without giving it special
consideration. Moreover, database tuning tasks and database save operations can be performed independently and
concurrently in the split units.

SQL

SQL is a standard database language for performing database definition and data manipulation. SymfoWARE/RDB
basically conforms to the protocols of the international standards IS 9075, JIS X3005, and ANSI X3.135.

SQL embedded host program

In an application program that manipulates a data base, the parts of the program that perform database processing
are written using SQL statements. The parts of the program that perform other kinds of processing are written using a
programming language such as C language or COBOL. Application program in which SQL statements are embedded
are called SQL embedded host programs. The following terms are used for application programs that contain
embedded SQL statements:

a. SQL embedded C program
b. SQL embedded COBOL program

SQL embedded host program is the generic term for a) and b).

Status variable

The status variable, SQLSTATE, reports the processing result of an SQL statement to an application program. When

215

an SQL statement is executed, the status code for the execution result is stored in the status variable.

Storage data

Data that is stored in a database space. The rows and columns of tables represent the logical aspect of data, and
stored data represents the physical aspect of data.

Storage structure

A database structure along with logical structure and physical structure. Storage structure physically locates data
logically expressed as rows and columns of tables in a database as storage data. A storage structure is expressed
using DSO and DSI. The storage structures for base tables are RANDOM structures, SEQUENTIAL structures, and
OBJECT structures; BTREE structures are the storage structures for indexes.

Related terms:
Physical structure, logical structure

Storage structure definition

The definition of mapping between tables and database spaces. The two kinds of storage structure definition are data
structure organization (DSO) definition and data structure instance (DSI) definition.

Structure host variable

A host variable declared as the structure type is called a structure host variable. When a structure host variable is
declared, each member is handled to correspond to individual columns in a database so that multiple-column data can
be manipulated in row units. Multiple rows can also be inserted at one time. A structure host variable can be used in
combination with a pointer variable to simplify the application program and improve maintainability.

System table

A table that manages definition information for, for example, databases and schemas defined by a SymfoWARE/RDB
user. The system table is also called the RDB dictionary.

Table

In a relational database, data is represented using two-dimensional tables consisting of rows and columns. The two
kinds of tables are base tables and view tables.

Table constraint

Constraints on tables are unique constraints (UNIQUE or PRIMARY KEY)

Related terms:
Unique constraint

216

Table declaration

A table declaration declares the schema in which a table is located. If a table declaration is specified, the schema
name need not be specified for a table in data manipulation statements. Using a table declaration simplifies the
specification of table names. Using a table declaration also helps to make an application program independent of a
data base.

Table name

A name attached to table. Table names are set in schema definitions. Table names are used to specify the tables to be
made the subjects of operations in SQL statements that manipulate data.

Temporary table

A table created specifically for a user of an application program. Multiple users can use temporary tables with the
same table name. To temporarily save data being processed by an application program, a temporary table can be
used independently of other application programs.

Transaction

The unit that guarantees consistency of sequential data operations. A database can be accessed and updated serially
or updated by arranging a number of SQL statements. If a problem such as an unexpected system crash occurs
during sequential data operations, database recovery status can be based on units of transactions.

Trigger definition

Trigger definition defines table data manipulation (insert) in conjunction with other table data manipulations (insert,
delete, update).

Unique constraint

A constraint on a table or column. This constraint requires that a table cannot have multiple rows having the same
value in a column or combination of columns.

Updatable cursor

In an SQL data manipulation statement, a cursor that can be used to update and delete is called an updatable cursor.
The cursor declaration specifies whether a cursor is updatable. For example, if a table specified in the FROM clause
of a query specification satisfies just one condition, the cursor is an updatable cursor.

Related terms:
Read-only cursor

Update mode

A mode denoting strength of exclusion. Also called nonshared mode, the update mode represents the strength of data
locks in data manipulation. Data that is locked in update mode cannot be manipulated by other transactions. In
general, the execution of other transactions waits until a commit is performed on the transaction that obtained the data
lock.

217

Related term:
Reference mode

UPDATE statement

The UPDATE statement is a SQL data manipulation statement used to update data in table rows.

Upgrade

Index update processing. In conjunction with data update, insertion, and deletion processing in a table, this process
updates indexes attached to that table to reflect the latest status. This processing is called upgrading indexes.

View definition

The definition of a view in a logical structure definition. The view definition defines the portion of the base table that
forms the view, the name of the view, and the name of each column.

WHERE clause

In an SQL data manipulation statement, the WHERE clause is a search condition that specifies rows to be
manipulated.

Work table

A temporary table the SymfoWARE/RDB system uses for manipulating data. Intermediate results often must be saved
when the SymfoWARE/RDB system executes operations on data. A table that saves intermediate results is called a
work table. A work table of up to a specified fixed amount uses virtual memory. When a work table exceeds the fixed
amount, it uses a sort work area on magnetic disk. The amount of virtual memory to use can be specified in the
application environment file.

Related terms:
Sort work area

Working sort area

A temporary area used for sorting by the SymfoWARE/RDB system. If the SymfoWARE/RDB system has to sort data
during data manipulation, loading, or unloading, it sorts this data in a work area for sorting. This work area for sorting
is called the working sort area. Up to a fixed amount of virtual storage is used for a working sort area. However, when
this amount is exceeded, a sort work area on magnetic disk is used. The amount of virtual storage to be used can be
specified in the operating environment file.

Related terms:
Sort work area

218

	Top Page
	Preface
	Chapter 1 SymfoWARE/RDB Overview
	Chapter 2 Database Creation
	Chapter 3 Database Definition Alteration and Deletion
	Chapter 4 Storage Structure
	Appendix A Quantitative Restrictions
	Appendix B Sequential Relationships among Definition Changes
	Appendix C Operating Environment File Parameters
	Appendix D Environment Variables
	Appendix E RDB Command Summary
	Appendix F Handling SymfoWARE/RDB Messages
	Appendix G Exclusive Control between Application Programs and RDB Commands
	Glossary

